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Introduction

This report summarizes the work I have done during my internship on the nuclear research center
of the french Atomic Energy Commission (CEA), Cadarache. It spanned on three and a half month
during which I was supervised by Rémi Chauvin, Jérôme Francescatto and Kévin Pons.

With the approaching arrival of sodium-cooled fast reactors (SFR, fr. RNR-Na), the need of
numerical tools for risks assessing and for getting a better understanding of underlying concepts
arises, such as for vapor explosions and corium/sodium interaction. An aim of the french Atomic
Energy Commission is to keep a hand on the knowledge and the expertise that such topics require.
For this reason, a choice has been made to use a pre-existing tool developed by the CEA, TRUST ,
and to upgrade it towards these abilities.

TRUST comes from a CFD platform, TrioU which has been split in 2015 into TrioCFD and
TRUST when TrioU was transferred from Grenoble to Saclay CEA center. In some sense, TrioCFD is
a whole CFD software for incompressible fluids whereas TRUST is the numerical core of the platform.
Both of these codes implemented at first incompressible 3D models, that slowly tend to be adapted
towards compressible ones as the needs arise through some phenomena in nuclear reactors.

TRUST implements so called Mark-and-Cells schemes (MAC schemes) where velocities are defined
at mesh interfaces; it also makes use of some implicit parts within the schemes. It is a heavy code as
it is massively parallel, able to deal with 2D, 3D, multi-fluid and multi-physics problems. Moreover it
uses some custom C++ tools as it has first been developed without using STL. For instance, pointers,
references, vectors and other objects are redefined. Finally, no mathematics, neither numerical nor
informatics documentation on its multi-fluid aspects exist as it has been implemented until the end
of 2021.

Because of all these reasons, TRUST is not suited for performing numerical investigation directly
inside of it. This is why I worked on a 1D simple C++ code that Rémi Chauvin had started to develop
for my arrival.

The aims of this internship are thus to perform some numerical investigation, both on MAC
schemes and on TRUST numerical methods, to try to reproduce or even improve them. The main
mission being to adapt it for compressible problems (ultimately heavy shocks) while minimizing the
changes to bring to the schemes as it might one day be implemented inside TRUST platform.
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Chapter 1

Commissariat à l’énergie Atomique

In this chapter, we are going to introduce what the Commissariat à l’énergie Atomique (CEA, eng.
Atomic Energy Commission), both about its history, how, when and why it has been created as well
as its inner branching and its domains of activities.

1.1 History

Established in 1945, shortly after World War II, the CEA was created with the aim of coordinating
and promoting scientific research and peaceful applications of atomic energy.

Figure 1.1: Original order [1] of creation of the CEA
on September 18th, 1945

At the beginning of its existence, the CEA focused a lot on fundamental research and the de-
velopment of nuclear reactors for electricity generation and defense. Including the renowned Saclay
Nuclear Research Centre, many research facilities were established to support these activities. The
CEA quickly gained international recognition for its research and development in the field of nuclear
energy.

During the 1950s and 1960s, the CEA was also involved in military research projects, particularly
in the field of nuclear weapons [2]. These activities were part of France’s nuclear deterrence program.
While military research was an integral part of the CEA’s activities at the time, the emphasis was
always on the peaceful uses of atomic energy.

In the next decades, it expanded its expertise areas to diversify in many research fields, such as
defense or medical applications. It engaged studies on nuclear fusion, radioactive waste treatment,
nuclear safety, defense, and many other related areas. The CEA also played a prominent role in
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international cooperation, collaborating with other research institutions and international organiza-
tions to share knowledge and technologies in the field of atomic energy.

By contributing to the building and operation of nuclear power plants, the commission has been
a real key player in the promotion of nuclear energy in France. It has also worked on innovative
technologies such as fast neutron reactors and nuclear fusion reactors to meet future energy needs.

Nowadays, the commission is still a major player in the field of atomic energy and scientific
research in France as it strives to develop safer, cleaner, and more efficient technologies for the
future of nuclear energy, as well as many other technologies mentioned further.

1.2 Activities

The Atomic Energy Commission (CEA) is involved in a wide range of activities and technologies
related to atomic energy. These activities aim to harness the power of nuclear reactions for various
beneficial purposes while ensuring safety, security, and sustainability. All this information has been
found on the firm’s website (url for CEA research domains). Here are some of the key areas in which
the CEA operates.

Figure 1.2: CEA Centers locations (presentation webpage)

Nuclear defense The CEA is involved in various aspects of nuclear defense, including the design,
manufacture, and maintenance of nuclear warheads for French airborne and seaborne nuclear forces.
They also design and build nuclear reactors for French navy’s ships, submarines, and aircraft carriers,
providing ongoing support and maintenance for these reactors. Additionally, the CEA contributes
to national and international security by assisting authorities in combating nuclear proliferation,
terrorism and disarmament. They also provide expertise in conventional defense activities, focusing
on weapon effects and vulnerability. Its simulation program, supercomputers, radiographic facilities
and laser systems help ensuring safety, reliability, and certification of nuclear weapons and propulsion
systems, with avoiding the need of doing real scale and real life tests as it has been done in the past
and which is forbidden nowadays.

Energy The CEA’s takes part in the development of low-carbon power systems that integrate
nuclear and renewable energies. They explore various aspects such as innovative methods for low-
carbon power generation, efficient energy storage systems, effective control and conversion techniques
and resource management within a circular economy framework. Their expertise in these areas ben-
efits both the French government and industry stakeholders. The CEA’s research spans a wide range
of topics including current and future nuclear reactors, the nuclear fuel cycle, solar power, hydrogen
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technologies, small modular reactors (SMRs), and thermonuclear fusion as it takes part in the ITER
project ; some component have been tested on the CEA’s tokamak : WEST. Additionally, they
investigate energy system control and management, including future energy networks, stationary
energy storage systems, and sustainable mobility solutions. The CEA also actively contributes to
circular economy by optimizing the nuclear fuel cycle, exploring technologies for a carbon circular
economy, and promoting responsible resource management.

Nuclear Medicine and biology Nuclear medicine involves the application of radioactive isotopes
for diagnostic imaging, therapy, and research purposes. The CEA conducts research in radiobiology
and toxicology to understand the effects of radiation, radionuclides, and nanoparticles on humans
and the environment. Their studies contribute to radiation protection standards and medical radio-
therapy advancements. Pathogenesis research explores cellular processes and disease mechanisms,
aiding in the development of therapeutic and diagnostic strategies. The CEA also focuses on inno-
vative diagnostics, therapies and nanomedicine, aiming to improve patient care through biomarker
discovery, targeted treatments and regenerative medicine. Overall, the CEA’s research enhances
scientific knowledge, medical practices and solutions for health challenges. The main part of these
activities are located in Grenoble.

Matter and universe The CEA conducts theoretical and simulation-based research in diverse
areas of physics. In nanoscience, it explores the properties and applications of materials at the atomic
scale. Material research covers structural analysis, photonics, superconductivity and magnetism.
Nuclear physics studies atomic nuclei, including exotic and superheavy ones, with implications for
astrophysics. The CEA contributes to instrument design and testing of theoretical models for particle
physics. Finally, it is involved in large international astrophysical observation programs across
different energy ranges. The CEA excels in instrumentation, designing experiments and utilizing
high-performance computing.

Electricity production The production of electricity through nuclear power plants is a key area
of emphasis for the CEA. The commission is responsible for overseeing the licensing, regulation,
and enforcement of safety standards for these facilities, ensuring their efficient, reliable and secure
operation. One could think about ”France Relance” program initiated by french government in
September 2020. Furthermore, the CEA actively supports research and development efforts in
advanced reactor designs, with the goal of improving the safety and efficiency of nuclear power
generation.

Nuclear Safety and Security Ensuring the safety and security of nuclear facilities and mate-
rials is a critical aspect of the CEA’s responsibilities. It establishes and enforces stringent safety
regulations and guidelines to minimize the risks associated with nuclear activities. The commission
also collaborates with law enforcement agencies and international organizations to prevent nuclear
weapons proliferation and to safeguard against illicit nuclear activities.

Nuclear Science Education and Outreach The CEA plays a crucial role in educating the pub-
lic about atomic energy and dispelling misconceptions surrounding nuclear technology. It provides
educational programs, public forums and informational resources to increase public awareness and
understanding of nuclear science and its benefits. The CEA also plays major role in training young
scientists and engineers, which is a non negligible mission, thanks to which I have had the pleasure
having my internship at this firm.

Overall, the Atomic Energy Commission undertakes a wide range of activities and utilizes various
technologies to harness the potential of atomic energy for the betterment of society. While ensuring
safety and security, the commission strives to promote innovation, sustainable practices and the
peaceful use of nuclear technology.
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1.3 The severe accident modeling laboratory (LMAG)

The LMAG (fr. Laboratoire de Modélisation de Accidents Graves) specializes in modeling severe
accidents, for instance those in which the reactor’s core has melted, resulting in the formation of
corium with high temperature. This is a significant concern because it can potentially breach the
tank containing the uranium fuel, trigger vapor explosions upon contact with the surrounding water,
and eventually reach the underlying layer of concrete that supports the facility. Such incidents can
occur, for instance, in pressurized water reactors, which are the predominant type of reactors found
in France’s current nuclear power plants.

Reactor designs aim to prevent reaching such critical stages, but there is always a possibility
of natural disasters or design-related issues. A prime example is the Chernobyl catastrophe in the
late 1980s and the meltdowns of reactors 1, 2, and 3 at Fukushima Daiichi following a tsunami in
2011. This underscores the importance of gaining a comprehensive understanding of these issues to
effectively address them and make informed decisions regarding the security measures that should
be implemented in case of their occurrence.

Figure 1.3: Simplified view of how a pressurized reactor manages to produce electricity

The LMAG conducts studies on these types of events using a numerical approach. Replicating
accident conditions is challenging and costly. As a result, programs are being developed to simulate
these configurations. The laboratory utilizes various codes to examine each stage of severe accidents
across different reactor types, ranging from core meltdown to corium’s interaction with concrete. For
example, the SIMMER code models the core melting’s candeling effect and how corium interacts with
the tank in RNR-Na reactors. MC3D is employed to simulate the interaction between corium and
water, including vapor explosions. The SCONE code, deriving from TRUST and which forms the basis
of this internship, focuses on CFD which is mainly associated with vapor explosions and core cooling.

These codes play a crucial role in modeling configurations that may give rise to issues and
they are also essential for assessing the safety of existing reactors. Utilizing these codes requires
extensive expertise in numerical methods for implementing the governing equations, as well as a
deep understanding of neutronics, physics and mathematics.
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Chapter 2

Euler’s 1D equations

A general overview and some comprehension keys are going to be given to the reader about what
these equations are, what they model, where they come from and why they are meaningful in this
internship context. Note that the homogeneous system is going to be introduced, but a source term
for gravity could be added to the momentum and total energy equations.

2.1 Mono-fluid equations

2.1.1 Governing equations

For a chosen material, we denote its density ρ, velocity v, specific internal energy ε and finally its
pressure p. Euler’s equations[3] are then formulated as :

∂(ρ)

∂t
+
∂(ρv)

∂x
= 0 (Mass/Density)

∂(ρv)

∂t
+
∂(ρv2)

∂x
+
∂(p)

∂x
= 0 (Momentum)

∂(ρε)

∂t
+
∂(ρεv)

∂x
+ p

∂(v)

∂x
= 0 (Internal Energy)

One can find on the left the names we choose to give to these equations in this report ; it corre-
sponds to the quantity they act one.

Note that these equations are set as functional relations which could refer to distributions. This
will be the case if dealing with shocks, the density could be a Heaviside function for example. Note
that as the velocity is not forced to have null divergence, this system describes a compressible fluid.

The system has 4 variables : ρ, ε, v, p. In fact, pressure will be deduced from density and internal
energy thanks to an equation of state :

p = P(ρ, ε) (2.1)

which is determined empirically with many constants, defined when coping with thermodynamics.
Section 2.3 will provide details about the closure we chose : the Stiffened Gas equation of state.

Remark At first, these equations were designed to represent perfect fluid movements[4] with
only the Momentum equation. Euler’s work has then been extended in 1822 by Henri Navier who
introduced viscosity term in the momentum equation[5] and few other mathematicians and physicists
have contributed to it, such as George Gabriel Stokes. These equations are well suited for adiabatic
flows, meaning no heat flux exists between the domain of study and the outside environment.
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2.1.2 Conservativity property

Euler’s equations are build around density, momentum and total energy conservation, meaning
they preserve their quantity over the domain. This ensures a natural rule which is that matter
or movement cannot emerge of vanish from nothingness. Conservativity is a property enabling
numerical schemes to converge towards the right weak solution.

1. A smooth quantity f is said to be conserved if its integral over a closed domain Ω changes
in time at the speed at which it is transported through the boundary of the domain in
which it is contained i.e.

∂

∂t

∫
Ω

ϕ(t, x)dx = −
∫
∂Ω

F (ϕ(t, x)) · ndx (2.2)

2. An equation (E) is said to be conservative for a function ϕ if there exists a smooth
functional F such that equation (E) is equivalent to

∂(ϕ)

∂t
+∇x · F (ϕ) = 0 (2.3)

with space derivative adapted to the number of dimensions.

Definition / Property

A proof of equivalency of these two definitions is made in appendix A assuming some measur-
ability and smoothness properties on the flux and ϕ. It is then clear that Euler’s equations are
conservative for density and momentum. On the other hand, due to its shape, the internal energy
equation is not conservative (variable outside the gradient).

For instance, if the domain is closed with null flux on the boundary, the total mass and momentum
should be preserved. This concept thus ensures that when no source or sink exists, the system is
isolated. This fundamental principle guarantees the stability and integrity of the system, regardless
of the specific dynamics of the underlying equations.

2.1.3 Total energy formulation

As seen before, Euler’s equation are not conservative for internal energy. However, they do preserve
total energy. This can be proven building the kinetic energy equation and combining it to the
internal energy one. This is a method to build total specific energy as the sum of internal and
kinetic energies. The procedure is detailed in appendix B and leads to the total energy equation
expressed as :

∂(ρe)

∂t
+
∂(ρev)

∂x
+
∂(pv)

∂x
= 0 (2.4)

where it is considered that total specific energy is e = ε + 1
2v

2. Due to its shape, this equation
is a conservation equation with some transport of the total energy inside the domain.

Within Euler’s equations system, it is possible to replace the specific internal energy equation
with this total specific energy one. This would mean that the total energy becomes an unknown,
the internal energy will be derived from it, meaning the nature of the problem changes. We would
then say we work under a total energy formulation.
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2.2 Multi-fluid Euler’s equations

In this chapter, we work under a multi-fluid formulation, meaning we could have mixtures of different
fluids occurring. We add an exponent k to designate a particular specie.

2.2.1 Governing equations

Still working under a eulerian framework, the multi-fluid version of the equations is formulated as
follows.

∂(αkρk)

∂t
+
∂(αkρkvk)

∂x
= 0 (2.5)

∂(αkρkvk)

∂t
+
∂(αkρkvkvk)

∂x
+ αk ∂(p

k)

∂x
= 0 (2.6)

∂(αkρkεk)

∂t
+
∂(αkρkεkvk)

∂x
+ pk

(
∂(αk)

∂t
+
∂(αkvk)

∂x

)
= 0 (2.7)

where ρk, vk, pk, εk still denote the density, velocity, pressure and internal specific energy of the
fluid, but specifically design specie k ones. Variable αk denotes the volumic fraction of the fluid,
and should always sum to 1 when adding over its index k as it is a barycenter. It is the proportion
of specie k, as a function of space and time.

One major difference with mono-fluid equations is that the momentum is no longer preserved.
This comes from the possible conversion of momentum from a specie to another.

2.2.2 Closure of the system

In their current formulation, assuming there areK different species, the equations have 5K unknowns
meaning the system has be closed. Two paradigms exists which both introduce an equation of state

pk = P(ρk, εk) (2.8)

Baer-Nunziato approach[6] In this approach, all pk could be different so as they are deduced
from internal energy and density, K closure relations are to be found. These relations in fact concern
the volumic fraction by adding an advection equation on it

∂(αk)

∂t
+ vk

∂(αk)

∂x
= Sk(p1, . . . , pK) (2.9)

where Sk is a well chosen source term including differences of pressure between species. For instance,
if K = 2 it is expressed as S1 = p2−p1 and S2 = p1−p2. For numerical sake, a weighting coefficient
might be added before Sk to perform the so-called pressure relaxation to avoid the system blowing
up. Finally, to make sure the volumic fraction is barycentric, αK is deduced from other volumic
fractions. If Sk is chosen not to be null, a fractional step method should be used[7] and some
additional source terms should be added in momentum and energy equation[8, 9].

Isobaric approach The main difference with the Baer-Nunziato approach is that it is assumed
p1 = · · · = pK . This means there are actually 4K + 1 unknowns. Using Euler’s equations with the
addition of the equation of state provides 4K closure relations, meaning one misses. The barycentric
condition on the volumic fraction is then added to close the system.
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2.2.3 Total energy formulation

As for the mono-fluid case, a multi-fluid version of the total specific energy can be derived. It uses
the very same tricks as for the mono-fluid case ; detailed calculations can be found in appendix C.
The obtained formulation is

∂(αkρkek)

∂t
+
∂(αkρkekvk)

∂x
+
∂(αkpkvk)

∂x
+ pk

∂(αk)

∂t
= 0 (2.10)

On the contrary to mono-fluid total specific energy equation, this one is note conservative. In
fact there could be some energy exchanges between two different fluids both in kinetic and internal
energy. However, when summing over index k meaning we consider species as a whole corps, it is
clear that we get back the mono-fluid energy equation, which is conservative. This means that over
the domain, the global total energy is preserved, but not at the scale of each specie.

2.3 Stiffened gas equation

It has been mentioned multiple times that an equation of state will be used to close the system.
The so-called Stiffened-Gas equation[10, 11] is chosen as it is widely used in multi-component flow
problem applications, easy to implement and well suited for shocks[12]. The formula is given as
follows :

pk = (γk − 1)εkρk − γkpk∗ (2.11)

where pk, εk, ρk are the pressure, specific internal energy and density of the fluid, pk∗ is empirically
determined and represents attraction between the fluid’s molecules and γk the adiabatic index of
the fluid. It is a linearized version of Mie–Grüneisen equation of state[13] and its stiffened character
comes from pk∗ which enables to capture tension as it was first designed for solids.

2.4 Artificial viscosity

When dealing with shocks, there is no weak solution uniqueness as solutions are defined almost
everywhere. This means a choice shall be made, generally on the only physically consistent solution,
the entropic one, when viscosity tends towards zero. However, adding a hand-crafted term to mimic
viscosity in order to stabilize numerical schemes is possible. Such a term is expressed as the linear
combination of a linear and a quadratic member [14]

−αρc∆x∂(v)
∂x

+ β(γ + 1)
ρ

4
∆x2

(
min(0,

∂(v)

∂x
)

)2

(2.12)

where α, β are some weighting coefficients for the linear combination, c is the sound speed in the
fluid, ρ the fluid’s density, vk its velocity and γ its corresponding adiabatic coefficient.

As it is explained by Debord[15], the quadratic term, weighted by β performs a diffusion of the
shock in order to slightly smooth it and avoid numerical artefacts, it stabilizes strong shocks. Its
min term has to role to activate it only when a node is in a compression state. On the other hand,
the linear term, weighted by α has the role to dump non physical oscillatory behaviours provoked
by the quadratic term.

Ideally, as TRUST has no need of such a tool, we wish our schemes will not need it, even though
it is now an available tool for shock stabilization.
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Chapter 3

Discretization of the equations

In this chapter, the finite volume method will be used. In one dimension, it is similar to the use of
finite differences apart from the fact that the space step is multiplying the time derivative instead
of dividing discrete spatial gradients.

3.1 Framework and notations

We are going to discretize the equations with the so-called Marker-and-Cell (MAC) scheme presented
by F. H. Harlow and J. E. Welch [16]. It consists in defining density, volumic fraction, pressure and
specific internal energy at the cells’ centers, and to define the velocity at interfaces. This has the
advantage to make the pressure gradient be of second order1. Consider that all the unknowns are
function of time and space.

3.1.1 Spatial mesh

On the spatial domain, one define a mesh with cells indexed from 1 to N , which center position is
denoted xi for cell i. One defines the interfaces (dual mesh) thanks to their position denoted xi+ 1

2

or xi− 1
2
. Thanks to these notations, one can define their length :

• for cell i (ci): ∆xi = xi+ 1
2
− xi− 1

2

• for interface i+ 1
2 (ci+ 1

2
): ∆xi+ 1

2
= xi+1 − xi

To denote the integration over a cell’s spatial domain (from its left interface to its right one), we
will denote the cell as ci. In a same way, to denote integration over an interface’s spatial domain,
we will denote the interface as ci+ 1

2
or ci− 1

2
.

Figure 3.1: Cells and interfaces illustration

· · · · · ·

· · · · · ·
• • • • •

1
2

1
3
2 i− 1

2

i

i+ 1
2 N − 1

2

N

N + 1
2

a b

With this discretization, you can see that x 1
2
= a and that xN+ 1

2
= b meaning there is indeed

one more interface than cell centers.

1Write a Taylor development under its integral form : pi+1 = pi +∆xi+ 1
2

∫
c
i+1

2

∂(p)
∂x

dx.
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In order to make the scheme more readable, we will choose the following notations :

αk
i =

1

∆xi

∫
ci

αkdx ρki =
1

∆xiαk
i

∫
ci

αkρkdx

εki =
1

∆xiαk
i ρ

k
i

∫
ci

αkρkεkdx pki =
1

∆xiαk
i

∫
ci

αkpkdx

These ones seems to be a good choice as they enable to write the finite volume discretization
almost at sight for Euler’s multi-fluid equations, while keeping the equations readable and making
sens mathematically. Finally, note that these objects are actually functions of time.

3.1.2 Interpolation method

The use of finite volumes make some undefined terms appear such as velocity on cells centers or
density at interfaces. The choice of upwind interpolation is made as Euler equations represent ad-
vection. This means that the interpolation follows the natural direction of information propagation.
For instance, it is proved in appendix D that the choice of centered interpolation for 1D advection
equation is unconditionally unstable, meaning this choice guarantees stability of the scheme, in the
Von-Neumann analysis sense.

In order to be explicit, for the quantity Φ ∈ {α, ρ, ε, p} which is defined at the cells center,
interface value is interpolated with an upwind method :

Φk
i+ 1

2
=

{
Φi if vk

i+ 1
2

≥ 0

Φi+1 if vk
i+ 1

2

< 0
(3.1)

Finally, for the velocity, which is defined at the interface, it will be interpolated at cells centers
with an upwind manner :

vki =

{
vk
i− 1

2

if vk
i+ 1

2

≥ 0

vk
i+ 1

2

if vk
i+ 1

2

< 0
(3.2)

Note that depending on the nature of some terms, it might be clever to choose other kinds of
interpolation. This will be investigated in the result chapter.

3.2 Density and internal energy equations discretization

Here, we derive the scheme for the density equation and the internal energy. First, recall the multi-
fluid mass and energy equations :

∂(αkρk)
∂t + ∂(αkρkvk)

∂x = 0
∂(αkρkεk)

∂t + ∂(αkρkεkvk)
∂x + pk

(
∂(αk)
∂t + ∂(αkvk)

∂x

)
= 0

(3.3)

3.2.1 Time discretization

We choose to work with explicit Euler forward method for simplicity sake. Time step can change
over time but will respect the relation tn+1 = tn +∆t where tn is the n-th iteration of the scheme
and ∆t the quantity of time to go to next time.

For density, time derivative is expressed as follows :∫
ci

∂(αkρk)

∂t
dx = ∆xi

αk,n+1
i ρk,n+1

i − αk,n
i ρk,ni

∆t
(3.4)
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The energy time derivative is discretized as :∫
ci

∂(αkρkεk)

∂t
dx = ∆xi

αk,n+1
i ρk,n+1

i εk,n+1
i − αk,n

i ρk,ni εk,ni

∆t
(3.5)

and volumic fraction time derivative is written as :∫
ci

pk
∂(αk)

∂t
dx = ∆xip

k
i

αk,n+1
i − αk,n

i

∆t
(3.6)

where the assumption is that the pressure is constant over each cell, which is why one can extract
the pressure for the integral.

3.2.2 Space discretization

We still use finite volumes and integrate over an arbitrary cell ci as this is the place where pressure,
density, volumic fraction and internal energy are defined.

The space derivative coming from the density equation is treated as :∫
ci

∂(αkρkvk)

∂x
dx =

[
αk
j ρ

k
j v

k
j

]j=i+ 1
2

j=i− 1
2

= αk
i+ 1

2
ρki+ 1

2
vki+ 1

2
− αk

i− 1
2
ρki− 1

2
vki− 1

2
(3.7)

and finally the two space terms from the internal energy equation are expressed as :∫
ci

∂(αkρkεkvk)

∂x
dx =

[
αk
j ρ

k
j ε

k
j v

k
j

]j=i+ 1
2

j=i− 1
2

= αk
i+ 1

2
ρki+ 1

2
εki+ 1

2
vki+ 1

2
− αk

i− 1
2
ρki− 1

2
εki− 1

2
vki− 1

2
(3.8)∫

ci

pk
∂(αkvk)

∂x
dx = pki

[
αk
j v

k
j

]j=i+ 1
2

j=i− 1
2

= pki

(
αk
i+ 1

2
vki+ 1

2
− αk

i− 1
2
vki− 1

2

)
(3.9)

3.2.3 Summary

To sum up, the final scheme for the density equation is :

∆xi
αk,n+1
i ρk,n+1

i − αk,n
i ρk,ni

∆t
+
[
αk
i+ 1

2
ρki+ 1

2

]
u
vki+ 1

2
−
[
αk
i− 1

2
ρki− 1

2

]
u
vki− 1

2
= 0 (3.10)

The final scheme for the specific internal energy equation is :

∆xi
αk,n+1
i ρk,n+1

i εk,n+1
i − αk,n

i ρk,ni εk,ni

∆t

+
[
αk
i+ 1

2
ρki+ 1

2
εki+ 1

2

]
u
vki+ 1

2
−
[
αk
i− 1

2
ρki− 1

2
εki− 1

2

]
u
vki− 1

2
(3.11)

+ pki

(
∆xi

αk,n+1
i − αk,n

i

∆t
+
[
αk
i+ 1

2

]
u
vki+ 1

2
−
[
αk
i− 1

2

]
u
vki− 1

2

)
= 0

Colored terms are those which shall be interpolated with an upwind method. Note that they are
interpolated together as conserved quantities.

3.3 Non conservative momentum equation discretization

Multiple discretization of the momentum equation will be shown. Only non conservative ways of
proceedings are used here as the multi-fluid expression is non conservative. Recall the momentum
equation is :

∂(αkρkvk)

∂t
+
∂(αkρkvkvk)

∂x
+ αk ∂(p

k)

∂x
= 0 (3.12)
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3.3.1 Reformulation of the equation

In the will of imitating TRUST discretization which is called semi-conservative formulation, rather
than seeing the equation as dealing on the momentum, we shape it to be on the velocity. For this
purpose, on can reformulate the equation by expanding derivatives containing velocity :

αkρk
∂(vk)

∂t
+ vk

∂(αkρk)

∂t
+ αkρkvk

∂(vk)

∂x
+ vk

∂(αkρkvk)

∂x
+ αk ∂(p

k)

∂x
= 0 (3.13)

Note that orange terms express the density equation with a product by velocity, meaning they
can be deleted. The final form of the equation we stop at is :

αkρk
∂(vk)

∂t
+ αkρkvk

∂(vk)

∂x
+ αk ∂(p

k)

∂x
= 0 (3.14)

After a discussion with A. Gernschenfeld from the TRUST team, we chose to express vk ∂(vk)
∂x in

three different ways. We give them a surname which has nothing to do with intrinsic mathematical
properties but with how these terms look :

• Non-conservative : vk ∂(vk)
∂x

• Semi-conservative : ∂((vk)2)
∂x − vk ∂(vk)

∂x , formulation used in TRUST

• Quasi-conservative : 1
2
∂((vk)2)

∂x

To conclude on the reformulation, there are now 3 different ways to treat the momentum equation
depending the spatial derivative :

αkρk
∂(vk)

∂t
+ αkρkvk

∂(vk)

∂x
+ αk ∂(p

k)

∂x
= 0 (NCV)

αkρk
∂(vk)

∂t
+ αkρk

1

2

∂((vk)2)

∂x
+ αk ∂(p

k)

∂x
= 0 (QCV)

αkρk
∂(vk)

∂t
+ αkρk

(
∂((vk)2)

∂x
− vk

∂(vk)

∂x

)
+ αk ∂(p

k)

∂x
= 0 (SCV)

As mentioned in the literature[17, 18] the interest of having multiply possibilities for the mo-
mentum equation comes from the behaviour of the numerical error. In fact, even if continuous
expressions are equal, they might not have same numerical precision and properties when running
heterogeneous multi-fluid versions of the problem.

3.3.2 Time discretization

We still use forward Euler scheme to process time integration :∫
c
i+1

2

αkρk
∂(vk)

∂t
dx = ∆xi+ 1

2
αk
i+ 1

2
ρki+ 1

2

vk,n+1

i+ 1
2

− vk,n
i+ 1

2

∆t
(3.15)

Beware, here the method straddles two half cells as the velocity is defined only at interfaces. In
other words, it is applied on the dual mesh.

3.3.3 Space discretization

First we discretize the pressure term before showing what is done on velocity related terms :∫
c
i+1

2

αk ∂(p
k)

∂x
dx = αk

i+ 1
2

(
pki+1 − pki

)
(3.16)

We see that defining the interpolation method was useful as here the volumic fraction is needed at
an interface. Let us now derive the scheme for the different possible expression of the equation :
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• For orange term in equation NCV, applying finite volumes on a dual cell i+ 1
2 provides :∫

c
i+1

2

αkρkvk
∂(vk)

∂x
dx = αk

i+ 1
2
ρki+ 1

2
vki+ 1

2

(
vki+1 − vki

)
(3.17)

• For the orange term from QCV, which looks like a conservative term, we get :∫
c
i+1

2

αkρk
1

2

∂((vk)2)

∂x
dx =

αk
i+ 1

2

ρk
i+ 1

2

2

(
(vki+1)

2 − (vki )
2
)

(3.18)

• For the orange term in equation SCV, finite volumes provide the relation :∫
c
i+1

2

αkρk
(
∂((vk)2)

∂x
− vk

∂(vk)

∂x

)
dx = αk

i+ 1
2
ρki+ 1

2

[
(vki+1)

2 − (vki )
2 − vki+ 1

2

(
vki+1 − vki

)]
(3.19)

This very last way of expressing the term is the one unofficially called semi-conservative due to
its appearance, which might be in TRUST papers.

3.3.4 Summary

Here are summed up the different expressions obtained for the momentum equation where R denotes
the only changing part between possible schemes :

∆xi+ 1
2

[
αk
i+ 1

2
ρki+ 1

2

]
c

vk,n+1

i+ 1
2

− vk,n
i+ 1

2

∆t
+R+

[
αk
i+ 1

2

]
u

(
pki+1 − pki

)
= 0 (3.20)

with R chosen within relations derived at 3.17, 3.18 or 3.19 :

R =


[
αk
i+ 1

2

ρk
i+ 1

2

]
u
vk
i+ 1

2

([
vki+1

]
u
−
[
vki
]
u

)
or

1
2

[
αk
i+ 1

2

ρk
i+ 1

2

]
u

([
vki+1

]
u
2 −

[
vki
]
u
2
)
or[

αk
i+ 1

2

ρk
i+ 1

2

]
u

([
vki+1

]
u
2 −

[
vki
]
u
2 − vk

i+ 1
2

([
vki+1

]
u
−
[
vki
]
u

)) (3.21)

Note that a differentiation between density on time and space derivative is made for interpolation.
This is consecutive to the meeting with TRUST member A. Gerschenfeld who explained that this trick
is used in the plateform.

3.4 Conservative momentum equation discretization

The previous choice of discretization for the momentum equation was guided but the idea of getting
closer of what is implemented in TRUST . However, it seemed interesting to also be able to preserve
the conservativity of the momentum equation (for mono-fluid case at least), which is one of its
intrinsic properties :

∂(αkρkvk)

∂t
+
∂(αkρkvkvk)

∂x
+ αk ∂(p

k)

∂x
= 0 (3.22)

Here we do not reformulate the equation but directly apply finite volumes, integrating on the
dual mesh cells as velocity is defined at interfaces because of the use of a staggered scheme.
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3.4.1 Time discretization

As always, using Euler forward explicit method for time integration provides :∫
c
i+1

2

∂(αkρkvk)

∂t
dx = ∆xi+ 1

2

αk,n+1

i+ 1
2

ρk,n+1

i+ 1
2

vk,n+1

i+ 1
2

− αk,n

i+ 1
2

ρk,n
i+ 1

2

vk,n
i+ 1

2

∆t
(3.23)

Beware, k still denotes the specie, i+ 1
2 concerns the spatial position of the value and exponent n

concerns the time step at which it is taken.

3.4.2 Space discretization

This time there is a single scheme to derive although various interpolation method could be chosen.
Integrating momentum advection term over a dual mesh’s cell gives :∫

c
i+1

2

∂(αkρkvkvk)

∂x
dx = αk

i+1ρ
k
i+1v

k
i+1v

k
i+1 − αk

i ρ
k
i v

k
i v

k
i (3.24)

and on the pressure gradient : ∫
c
i+1

2

αk ∂(p
k)

∂x
dx = αk

i+ 1
2
(pi+1 − pi) (3.25)

which is the same as in the non conservative momentum equation formulation.

3.4.3 Summary

When all discretized terms are put together, the conservative momentum equation scheme is :

∆xi+ 1
2

[
αk,n+1

i+ 1
2

ρk,n+1

i+ 1
2

]
c
vk,n+1

i+ 1
2

−
[
αk,n

i+ 1
2

ρk,n
i+ 1

2

]
c
vk,n
i+ 1

2

∆t

+ αk
i+1ρ

k
i+1

[
vki+1

]
u

[
vki+1

]
u
− αk

i ρ
k
i

[
vki
]
u

[
vki
]
u

(3.26)

+
[
αk
i+ 1

2

]
u
(pi+1 − pi) = 0

where interpolation is performed for colored terms, fully upwind.

3.5 Total energy equation discretization

In order to have a fully conservative scheme, which should have better performances than all the
others, we provide discretization of the total energy equation, which we recall :

∂(αkρkek)

∂t
+
∂(αkρkekvk)

∂x
+
∂(αkpkvk)

∂x
+ pk

∂(αk)

∂t
= 0 (3.27)

We choose to define total energy at cells centers, on the primal mesh. Thus we will perform the
integration on an arbitrary cell ci.

3.5.1 Time discretization

Using explicit Euler forward time integration brings to :∫
ci

∂(αkρkek)

∂t
dx = ∆xi

αk,n+1
i ρk,n+1

i ek,n+1
i − αk,n

i ρk,ni ek,ni

∆t
(3.28)

∫
ci

pk
∂(αk)

∂t
dx = ∆xipi

αk,n+1
i − αk,n

i

∆t
(3.29)

where no specific interpolation is required as all variables are defined at cells centers.
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3.5.2 Space discretization

Discretizing the total energy convection term on the primal mesh provides∫
ci

∂(αkρkekvk)

∂x
dx = αk

i+ 1
2
ρki+ 1

2
eki+ 1

2
vki+ 1

2
− αk

i− 1
2
ρki− 1

2
eki− 1

2
vki− 1

2
(3.30)

and the pressure physical work is derived as∫
ci

∂(αkpkvk)

∂x
dx = αk

i+ 1
2
pki+ 1

2
vki+ 1

2
− αk

i− 1
2
pki− 1

2
vki− 1

2
(3.31)

Note that physical work has very different nature from convection as it is responsible for kinetic
energy variations, meaning in our case for internal energy too (as kinetic energy can be converted
into internal energy). Because of this nature difference, it could be interesting to push investigations
for interpolations over this term and address these differences.

3.5.3 Summary

The total energy equation scheme is then formulated as

∆xi
αk,n+1
i ρk,n+1

i ek,n+1
i − αk,n

i ρk,ni ek,ni

∆t

+
[
αk
i+ 1

2
ρki+ 1

2
eki+ 1

2

]
u
vki+ 1

2
−
[
αk
i− 1

2
ρki− 1

2
eki− 1

2

]
u
vki− 1

2
(3.32)

+
[
αk
i+ 1

2

]
u

[
pki+ 1

2

]
c
vki+ 1

2
−
[
αk
i− 1

2

]
u

[
pki− 1

2

]
c
vki− 1

2
+∆xipi

αk,n+1
i − αk,n

i

∆t
= 0

Beware, terms of different color are interpolated separately whereas gathered colored terms are
interpolated as conserved quantities.

3.6 VDF scheme

During this internship, it was not clear what TRUST really uses for the momentum equation. As
TRUST is inspired from American TRACE code[18], this is the scheme that is the most likely to be
implemented, but nothing is really sure as no genuine documentation exists.

Density and internal energy equations are preserved and identical as the one we derived pre-
viously. However, momentum equation is expressed in a different way, keeping whole momentum
terms in advection term and expressing it under the so-called semi-conservative form :

∂(αkρkvk)

∂t
+
∂(αkρkvkvk)

∂x
+ αk ∂(p

k)

∂x
= 0 (3.33)

⇐⇒ αkρk
∂(vk)

∂t
+ vk

∂(αkρk)

∂t
+ αkρkvk

∂(vk)

∂x
+ vk

∂(αkρkvk)

∂x
+ αk ∂(p

k)

∂x
= 0 (3.34)

⇐⇒ αkρk
∂(vk)

∂t
− vk

∂(αkρkvk)

∂x
+ αkρkvk

∂(vk)

∂x
+ vk

∂(αkρkvk)

∂x
+ αk ∂(p

k)

∂x
= 0 (3.35)

⇐⇒ αkρk
∂(vk)

∂t
+
∂(αkρkvkvk)

∂x
− vk

∂(αkρkvk)

∂x
+ αk ∂(p

k)

∂x
= 0 (3.36)

To go from 3.33 to 3.34, derivatives have been expanded. From 3.34 to 3.35 density equation is used
to convert density time evolution term into a density advection one. Finally for 3.35 to 3.36 we
gather two terms before pressure gradient to form a momentum advection term, leading to 3.36.
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3.6.1 Time discetization

Using Euler forward first order method on the dual mesh provides

∫
c
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2
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dx = ∆xi+ 1

2
αk
i+ 1

2
ρki+ 1

2

vk,n+1

i+ 1
2

− vk,n
i+ 1

2

∆t
(3.37)

where interpolation will have to be performed for density and volumic fraction.

3.6.2 Space discretization

First discretizing the momentum advection term gives∫
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for the second part of the semi-conservative term∫
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and finally for the pressure gradient term we get∫
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(3.40)

3.6.3 Summary

To sum up VDF scheme, recall that density and internal energy equations are the same as what has
been derived before. Only the momentum equation changes, which scheme is
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+
[
αk
i+ 1

2

]
u

(
pki+1 − pki

)
= 0

where on the contrary to our previous semi-conservative scheme, the density is inside space deriva-
tives. One advantage of this method is that interpolation mainly has to be performed on the velocity.
On the previous semi-conservative scheme, interpolation had to be done on lots of other variables.
As said previously, this discretization has the asset to have a good stability[17, 18] while having a
second order pressure gradient.

3.7 Antoine LLOR’s scheme

This scheme was designed by Antoine Llor, researcher at the CEA, who I have had the occasion to
speak with about my work in this internship. Working on staggered schemes for a long time, he
derived a scheme for us that is fully conservative while being under internal energy formulation. This
is done writing the kinetic energy equation looking for diffusion terms i.e. kinetic energy converted
into internal energy. Adding this dissipated energy to internal energy equation ensures total energy
conservation. This principle has been presented in 1974 by Debar[19], and then studied by others
such as Vasquez and Llor[20]. More details about this scheme are available in appendix E. The proof
of its conservativity can be found in appendix F.
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3.8 Second order accuracy in space

In order to get even better performance out of our schemes we perform a paradigm shift on the
interpolation method. Rather than computing weighted sums of neighbouring values for first order,
a gradient term will be added to the Taylor development on a cell ci :

Φ = Φi + (∇Φ)i(x− xi) (3.42)

In other words, scalar functions of interest will be considered piece-wise affine over the domain and
continuous on each cells. Note that all variables considered here are taken at same time step n.

3.8.1 Interpolation for node values

Consider Φ a scalar variable defined at cells centers which we need at interface i+ 1
2 . To get this

value, we must consider both sides of the interface to know possible values :

• Φ−
i+ 1

2

= Φi +
∆xi

2
∂(Φ)
∂x

∣∣∣
i
+O(

∆x2
i

4 ) (left)

• Φ+
i+ 1

2

= Φi+1 − ∆xi+1

2
∂(Φ)
∂x

∣∣∣
i+1

+O(
∆x2

i+1

4 ) (right)

where only half cell weight is taken into account as the aim is to interpolate on the dual mesh.

· · · · · ·

i− 1
2 i+ 1

2 i+ 3
2

• •
i i+ 1

Φ i
+

∆xi

2

∂(
Φ)

∂x

∣∣∣
i

Φi+1 − ∆xi+1
2

∂(Φ)
∂x

∣∣∣
i+1

Figure 3.2: Illustration of the underlying working principle of second order approximation for a
staggered scheme, here to interpolate interface values knowing node ones.

Then depending on the reader’s will, many possibilities are offered to choose Φi+ 1
2
value such as

Φi+ 1
2
=

{
Φ−

i+ 1
2
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2
> 0

Φ+
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2
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2
< 0

(upwind) (3.43)

Φi+ 1
2
=

1

2
(Φi +Φi+1) (centered) (3.44)

Term ∂(Φ)
∂x

∣∣∣
i
has to be defined. This will be done using limiters, which working principle will be

explained further in this chapter. Limiter function will be denoted f : R2 → R and provide this
expression for the gradient on cell i :
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(3.45)

where gradients given to f are computed with first order finite differences schemes :
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(3.46)
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To summarize the method, we end up with these values for Φ−
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If the need of interpolation arises for interface ci− 1
2
for example, a shift of the stencil to the left

enables to find the method to use.

3.8.2 Interpolation for cells centers values

The same approach is applied while shifting the stencil from the dual mesh to the primal one.
Consider v which is defined at interfaces and which we look to interpolate at cells centers :
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For instance, vi can be interpolated as

vi =
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2
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)
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The notation for the velocity gradient at interfaces i+ 1
2 shall be defined in a similar way as before.

In fact, considering a limiter function f , which enables to reduce oscillations, we obtain :
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with ∂(v)
∂x
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i
being computed using a first order finite difference scheme :
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To summarize, we end up with these values for v−i and v+i :
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v+i = vi+ 1
2
−

∆xi+ 1
2

2
f

(
∂(v)

∂x

∣∣∣∣
i

,
∂(Φ)

∂x

∣∣∣∣
i+1

)
(3.54)

Note that the term vi+ 3
2
will be involved to get ∂(Φ)

∂x

∣∣∣
i+1

in v+i value computation, same with vi− 3
2

when computing ∂(Φ)
∂x

∣∣∣
i−1

. Stencil’s footprint is then one term larger as before, being consistent

with a second order approach. As before, a shift of the stencil then enables to find interpolation
method for other centers such as ci+1. For values which are just after or before the boundary, we
perform first order approximation.
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3.8.3 Examples of limiters

For simplicity sake, we will keep the number of limiters small and we will stick with the most common
ones. Consider a, b ∈ R, then a few common limiters are :

minmod(a, b) = max(0,min(a, b)) + min(0,max(a, b)) (3.55)

superbee(a, b) = max(0,min(2a, b),min(a, 2b)) (3.56)

umist(a, b) = max

[
0,min(2a,

a

4
+

3b

4
,
3a

4
+
b

4
, 2b)

]
(3.57)

As M. Bijan[21] explains, a limiter interest resides in its ability to select within 0, a or b the
gradient value that will avoid creating new extrema i.e. staying in the so called Total Variation
Diminishing (TVD) region. As it does not create new extremas, no oscillation can arise from this
method, meaning the approximation will get better without becoming oscillatory.

3.9 Overview of the available schemes and notations

This makes a lot of schemes to investigate. Recall that two paradigms exist : working in specific
internal energy or specific total energy formulation. This will induce different conservativity proper-
ties on the schemes, meaning different accuracies thus efficient or not shock capture. Same idea can
be developed for momentum. Note that all presented schemes a conservative for the density.

All available schemes are summed up in the following table. Energy paradigm is to be read
column-wise whereas momentum conservativity should be read row-wise. The momentum advection
term shape is recalled on last columns. Colours are meant to emphase conservativity of the scheme.
Colour red is used for schemes preserving total energy, basically any that is under total energy
formulation. Colour blue for momentum conservative schemes, and colour green for scheme that
conserve both momentum and total energy.

Specific energy

Internal Total Momentum alternative

M
o
m
e
n
tu

m

Non-conservative

MacNCVε MacNCVe v ∂(v)
∂x

MacSCVε MacSCVe ∂(v2)
∂x − v ∂(v)

∂x

MacQCVε MacQCVe 1
2
∂(v2)
∂x

MacVDFε MacVDFe ∂(αρv2)
∂x − v ∂(αρv)

∂x

Conservative
MacCMε MacCMe

MacALLOR

Table 3.1: Notation to mention schemes depending on their momentum conservativity and their
energy formulation

Last letter stands for the type of energy formulation which is used (ε : internal, e : total). NCV
stands for non-conservative form for the momentum equation, SCV stands for semi-conservative
term, which is not mathematically rigorous but is intuitive considering the visual aspect of the
corresponding term. Finally, QCV stands for quasi-conservative as it looks like a conservative term
but is not a real one, and CM for conservative momentum. ALLOR and VDF stand for Antoine
Llor’s scheme and TRUST VDF scheme.
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Chapter 4

Presentation of the code

As the whole internship is based on the development of a code needed for generating approximations
to problems, we will present its overall structure, working principles and underlying concepts.

4.1 Architecture of the project

To project is articulated around configuration files (.json), some Python pre and post-processing
and a C++ numerical core.

4.1.1 Tree structure of files

In the following development, directory /hydromockup will be called root directory as it is the root
of the project. At the moment of this report being written, directories branching is the following :

+/hydromockup

| +-/build

| +-/doc

| +-/References

| +-/Results

| +-/src

| +-/studies

| +-/tests

| +-/Validation

+- create_project(.sh)

+- hydromockup(.py)

+- plot(.py)

+- README.md

The aim of this file structure is to have a clean organization enabling easy and secure tests
execution in order not to break the program. It is a way to tend to performance, readability and
integrity of the code. Here are presented the role of each directory or file located at the root.

Directories

• /build : Hosts cmake files for compilation (except CMakeLists.txt) and will host binaries
after compilation, for instance object files.

• /doc : The Doxyfile file for doxygen generated documentation as well as a css sheet for
a cleaner looking html documentation are stored here. This directory will host generated
documentation with html and LATEX format.

• /References : Analytical solutions for test cases are stored here. Has no sub branching.
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• /Results : Stores generated json result files after running a simulation. It is then empty
when cloning the project. No inner branching.

• /src : Contains the C++ sources needed for the numerical core to run (.h, .cc files) as well as
Eigen and rapidjson libraries. CMakeLists.txt can be found here.

• /studies : Playground of the project, where personal scripts can be put to run the code
without breaking the global architecture.

• /tests : Storage for test cases, json files with pre-defined values. For example, sedimentation
problems, Sod shock tube and others.

• /Validation : Not used during this internship. Will be filled with test cases in order to
perform program benchmarks.

Root files

Note that as these file do not have an extension (.py or .sh) they can be executed straight-forward
in the console by entering : ./name_of_file from the root.

• create_project : bash code that can be hand-used to compile the project and generate the
doxygen documentation.

• hydromockup : Python code that performs the pre-processing and launches the computational
kernel. It provides a git commit ID to each simulation, stores files on the temporary memory,
calls cmake compiler and writes output data in a json file at the end of the computations. In
a normal use, this script does not have to be modified but it should always be called to
execute this entire program.

• plot : Python script to perform post-processing. It should be called by hand and has many
options to animate plots of change their scale. No mandatory to use.

• README.md : only for Git presentation page. Brief description of the project.

4.1.2 Numerical core source files

The choice of implementing such a code with a C++ core was done taking into account that some
parts of it already existed, that this is an efficient language when it comes to large amounts of
computation and of course, it is a language enabling object oriented programming and inheritance.

• bc_type.h : declares a type BC_type for available boundary conditions types such as Dirichlet
or periodic ones. It does not define the values container.Boundary condition None corresponds
to letting boundary value constant in time, they are not modified.

• datastructure.h : declares a class Data that will have almost all attributes and methods in
a public scope in order for the other objects to access them. This data structure will only be
modified when initialized at the beginning of simulation, and when performing time integration.
Otherwise, other class can only access its elements, not over-write them. A variety of other
objects are declared such as LimiterType, BoundaryCondition where a container for values
is available, FaceProjection for the available ways of interpolating values.

• eos.h : hosts equation of state related methods, for now about stiffened gas one. Enables to
deduce pressure and sound speed. Code exits if sound speed is infinite.

• error.h : customized function to have clear error logs in the command invite. Can be imported
in any other file.

• limiter.h : declares a type for limiters, used for second order only. Some of them are minmod,
superbee, umist for example.
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/home/mr275082/Documents
/hydromockup/src/main.cc

datastructure.h

string

eos.h

error.h

iostream

read.h

timeloop.h

timestep.h

cstdlib

LinearAlgebra.hbc_type.hscheme_enum.h fstreamlimits

Eigen/Dense Eigen/Sparse

ostream scheme_list.h vector

mac_scheme.h

scheme.h

mac_scheme_allor.h mac_scheme_vdf.h mac_scheme_conservative
_momentum.h

limiter.h

Figure 4.1: File branching of the numerical core, generated with doxygen. In dark gray is the main
program, then in black outlined boxes are the different files needed by the main program, and in
light gray outlined boxes are the external libraries required.

• LinearAlgebra.h : declares customized names for Eigen vector or matrices to avoid long
declaration with all template arguments. Also declares printing methods for such objects.

• mac_scheme_allor.h : implementation of Antoine Llor’s scheme.

• mac_scheme_conservative_momentum.h : implementation of the momentum conservative for-
mulation of Mac scheme.

• mac_scheme_vdf.h : implementation of what is supposed to be TRUST VDF scheme.

• mac_scheme.h : implementation of the basic version of Mac scheme.

• read.h : set of methods for data structure filling. Error management on parameter values
can be done here. It initializes all need variables for the program coming from the json

configuration file i.e. test case file.

• scheme_enum.h : defines enumerated type for schemes for in-code scheme management.

• scheme_list.h : memory allocator set of methods to avoid stack overfilling.

• scheme.h : declaration of abstract class to be used as root for staggered or not schemes. Not
supposed to be used but can be changed if a need to create new method common to all schemes.

• timeloop.h : declares methods to perform time integration of variables depending on the
momentum conservativity property of the schemes. This might be the file to change if starting
to implement implicit or split time methods.

• timestep.h : hosts time step computing methods.
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4.1.3 Compilation and documentation

Compile the code

In order to compile the code, different options are available. The first one is to execute by hand all
the required commands, starting at the root of the project :

bash

cd build

cmake ../src

make -j8

an other possibility is to use the provided script create_project located at the root, that per-
forms these commands itself and additionally creates the doxygen documentation. Finally, if using
the provided pre-processing code hydromockup, the compilation is made by this file (through an
os.command() line), meaning there is no need to compile the project by hand.

Note that compilation is made using cmake as it simplify a lot compilation instructions. The
CMakeLists.txt file is placed in the /src directory and the other compilation files are placed in
/build directory.

Documentation generation

The documentation is made using doxygen as it is an open library which is simple to use and to
compile. In order to generate the documentation, the following commands have to be entered, from
the root :

bash

cd ./doc

doxygen Doxyfile

cd ./doxygen_doc/latex

pdflatex -interaction=batchmode refman.tex

The two last lines aim at compiling the LATEXdocumentation to generate the PDF version. Re-
garding the interactions with the architecture, two new directories appear in /doc/doxygen_doc

which are /html and /latex where doxygen generates the documentation under the corresponding
format. An other possibility to get the documentation to be generated is to use create_project

located at the root.

To find the {format} documentation generated by Doxygen, find one of these files:

• html : /doc/doxygen_doc/html/index.html

• LATEX: /doc/doxygen_doc/latex/refman.pdf

4.2 Code operation

4.2.1 Important classes

The code is based around object oriented programming, however for practical reasons, all attributes
are public in order to be accessible for other objects.

Data class

The central object of this program is a big container for all needed data such as matrices for vari-
ables, thermodynamic values, simulations parameters such as time step or artificial viscosity, as well
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as options to make schemes change.

This data structure is initialized in the main program according to entries of the configuration
file. No other class can write on its attributes other than Timeloop class, which performs time
integration and need to update variable matrices. This means that the Data class is only passed
by reference and even a const reference. This avoids making copies of it at each time step, thus
increasing performance. The Data class does not aim at computing or performing any time or spatial
integration. It is only used to store data in-code and to write it to files when needed.

Scheme class

The other important class of the program is the Scheme class which is the one from which all of
our schemes inherits. It is an abstract class that enables to differentiate between staggered or co-
localized schemes. Its purpose is to structure the code, not to be used.

For instance, MacScheme is the first which inherits from it as it is the most basic form of the
Mark-and-Cell scheme. All other schemes that have been studied in this internship then inherits
from MacScheme as they are all staggered with velocity at interfaces.

Scheme

MacScheme

MacSchemeVDF MacSchemeConservativeMomentum MacSchemeALlor

Figure 4.2: Inheritance illustration in the available schemes of the project.

Having this kind of inheritance structure enables to extend the code easily to other staggered
schemes or even to consider other types of variable mesh shifts.

4.2.2 General information

It is now time to see how the code can be used. The overall idea is that the code will always take
a configuration file (json format), fill the in-code data structure, perform all needed computations,
and then write back the results with potentially asked intermediary data into a file.

Configuration file

All configuration files contain same arguments. Note that the @help ones are not meant to be used
as argument but are used as comments for json file. All these arguments have filtered values, and
the code is made so that it stops if an unexpected value occurs rather than correcting
it. An example of such a configuration file can be found in appendix G. Mesh parameters are
mandatory, meaning the code will crash if a single one is missing, but others can be missing ; the
code might have a strange behaviour. Note that the values of those parameters, for some of them
are stored in lists in order to enable the conversion to multi-fluid problems more easily.

• case_name : It can be used to implement test cases or custom initializations directly in the
code (at the very end of file read.cc).

• mesh["Xmin"], mesh["Xmax"] : Real number for start and end of the segment. If xmin ≥ xmax

then the code exits with an error message.
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• mesh["N"], mesh["nb_mat"] : Number of cells in the domain ; should be a positive integer.
Code crashes otherwise.

• scheme : name of the scheme, string ; accepted values are Mac, Mac_CM, MacVDF, MacALLOR.
Any case, with or without underscore is accepted. Mac_Conservative_Momentum is also ac-
cepted instead of Mac_CM, again with any mix of upper and lower case, with or without some
of those underscores. Code exits if non valid entry is provided.

• linear_artificial_viscosity_coefficient : Real numbers, code crashes otherwise.

• quadratic_artificial_viscosity_coefficient : Real numbers, code crashes otherwise.

• face_projection, face_projection_for_momentum : string, projection type used for vari-
ables. The projection for momentum concerns α and ρ inside momentum equation. Accepted
values are upwind, centered, with any mix of upper and lower case, code exits if provided
value is not within these ones.

• dt : time step, real number. If positive, the code assumes the user wants a constant time step
for the simulation, that will also be the initial time step. If negative, the code will assume the
user wants a dynamic time step. If null, code exits.

• v_grad_v_term_type : string for the type of expression for operator v ∂(v)
∂x in momentum

equation under non conservative Mac scheme. Accepted values are ncv, scv, qcv respectively
for non conservative, semi-conservative and quasi-conservative. Code exits if value is not
managed. Note that these names have been chosen according to the look of the mathematical
term they refer to, but not to any checked or proved conservativity property.

• mixed_projection_alpha_rho_for_momentum : boolean true or false. Used to force time
derivative related density in momentum equation to be interpolated according to face_projection,
and the one on space derivative to be upwind. Code crashes if value is not a json boolean. This
option only affects MacNCV, MacQCV and Mac SCV schemes. If false, velocity in momen-
tum equation will be interpolated according to face_projection and volumic fraction and den-
sity in momentum equation will be interpolated according to face_projection_for_momentum.
If true, the same holds, but volumic fraction and density related to space derivative are forced
to be interpolated upwind.

• total_energy_formulation : boolean true or false. Used to choose to work under the total
energy formulation of Euler equations (true) or under specific internal energy (false). Code
crashes if value is not a json boolean.

• pressure_projection_for_total_energy : string, way of interpolating pressure gradient
when working under total energy formulation. Beware, this argument is still required when
working under specific internal energy, to be initialized in data structure. However it will not
be used. Accepted values are : upwind, centered, downwind, with any mix of upper and
lower case, code exits if provided value is not within these ones.

• flux_limiter : string, accepted values are minmod, umist, superbee with any mix of upper
and lower case. It designates the flux limiter used in case of order 2. This should be always
initialized, even when working at order 1. However it will not be used. Code exits if limiter
name is not managed.

• appx_order : 1 or 2. Otherwise the code exits if it is an other integer. The code crashes if the
type is an other one. It represents the wanted order of approximation (first or second).

• xSeparation : real number for the x-coordinate state change in the Riemann problem. If
smaller than xmin it will be considered that the right state of the Riemann problem is the one
for the whole domain. Similarly, if bigger than xmax, the code assumes the left state of the
Riemann problem is the one for the whole space. If the type is not respected, the code crashes.
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• alpha_L, alpha_R : Left and right volumic fraction for the Riemann problem. Code exits
if both sides of Riemann problem do not sum to 1 (barycentric condition). Code crashes if
double type is not respected.

• rho_L, rho_R : Left and right density for the Riemann problem. Should be a real positive
number. Code exits if not positive. Code crashes if type is not corresponding.

• eps_L, eps_R : Left and right internal specific energy for the Riemann problem. Should be a
real positive number. Code exits if not positive. Code crashes if type is not corresponding.

• u_L, u_R : Left and right velocity for the Riemann problem. Should be a real number. Code
crashes if type is not corresponding.

• gamma : adiabatic coefficient of the fluid. Code crashes if double type is not respected.

• Pi : constant representing molecular attraction in the stiffened gas equation (p∗ or p∞). Code
crashes if double type is not respected.

• gravity_source_term : gravity attraction (only acts in momentum and total energy equa-
tions). Code crashes if double type is not respected.

• final_time : real number corresponding to dimensionless time at which simulation will stop.
No filtering is performed, code will crash if negative or non real value.

• cfl : real coefficient, CFL coefficient used for time integration. No filtering is performed, code
will crash if value has a wrong type.

• leftBC, rightBC : boundary condition for the problem, string. Only accepted values are
‘Dirichlet‘ and None. The None condition repeats the initial boundary values over and over
(no time integration for first and last vector value). Code exits if the value is unknown.

• leftBCValue, rightBCValue : Real value for boundary condition. Should always be provided,
even under None condition. Their vector form is to store α, ρ, v, ε in this order. Code crashes
if type is not suiting.

• output_file : String, path and name for the file where results during and after the simulation
should be written. No check of path validity is made. Code will crash if the path is wrong.

• output_period : real value. Results will be written after each output_period has passed in
the inner simulation time frame. For instance, with simulation of dimensionless time 0.2, and
output_period= 0.05, there will be only 5 results writing the output_file which are : initial
state, and 0.05 ∗ 4 = 0.2 so 4 other states during the simulation.

• conservativity_filename : string, path and name for the file that will host conservativity
data of the simulation (integrals of variables over the domain, as functions of time). No check
of path validity is made, so code will crash if a problem arises.

Remark 1 Values that are set in the configuration file should be considered as default values if
the user does not change them in an other script.

Remark 2 The name of the parameters that you find in the configuration file are the options
that can be entered in the command line when executing the program. See 4.2.3 for some example.

Main program

The main program is located in file /src/main.cc by convention, and hosts simulation’s skeleton. Its
role is to call all needed objects’ constructor to initialize memory spaces such as Data and Timeloop

class.
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Before starting time integration, it makes the first dumping to files to write the initial state of
the simulation, both under variables’ profiles and conservativity point of views.

At each time step, it calls the equation of state to get an updated pressure function (which is
obtained thanks to density and specific internal energy). The main program then calls the time-step
computing functions if needed to make the simulation go forward and after calling the variables
value computing methods (scheme), performs some dumping to files if required in order to track
variables profiles.

Once the final time is reach, defined by the user with final_time, a last dumping is performed
to have final state of the simulation stored.

Generated files

When running the program, two files are generated. The first one is the conservativity file which
stores variables’ spatial integral over the domain; it is a txt file. The other one is the json result file
which stores simulation parameters from the configuration file, as well a git commit ID if needed,
and some states during the simulation depending on the output_frequency the user chose. An
example of such a result file can be found in appendix H.

4.2.3 Example of execution

For executing the program, the configuration (i.e. test case) file should always be provided. In the
following example, we will use the one located in /tests which is Toro1.json.

Through the command line

The general construction of the command (which should still be called if using an external script)
is the following one, assuming we call the program from the root directory :

bash

./hydromockup <path_to_test_file> [--<opt_name> <opt_value>]

where the brackets indicate that there could be many options put in the command line. Recall
that the opt_name is actually the name of the option that can be found in the configuration file,
meaning any option that figures in the configuration file can be modified with such an command.
Here is a concrete example :

bash

./hydromockup ./tests/Toro1.json --N 800 --output_file ./Results/my_file.json

Here the Toro1 test case, which we will see in the result chapter, is called. It is asked by --N 800

to change the predefined number of cells to 800, and it is asked to name the result file my_file.json
and to place it in directory /Results. Now it could be great to get a plot of the simulation, which
is possible thanks to the command :

bash

./plot <result_file_path> [quantity_to_plot] [--<opt_name> <opt_value>]

Beware, if no quantity, such as density or velocity is asked, the script will assume the user wants
all possibles quantities to be displayed (coordinates, density, volumic fraction, internal energy, pres-
sure, sound speed, entropy and velocity). To see available options, enter -h or --help and a display
of all options will be made in the console.
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Going back to our example, we wish to plot density and velocity profiles at time 0.1, which can
be made accordingly to this command :

bash

./plot ./Results/my_file.json density velocity --time 0.1

Many options are available, to change axis labels, to save the plot or to change the scale. Enter
the help option for this script to see them.

With an external script

In this case, the principle is exactly the same as for the inline program execution : the hydromockup Python

script at the root should be called, with a path to a test case file and be followed by the options the
user wants to change from the configuration file. Commands are the very same as for previous case,
only difference is that the external script should build it :

bash

./hydromockup <path_to_test_file> [--<opt_name> <opt_value>]

and the example presented before still holds. The advantage is that, assuming the user works
with a custom Python script, post-processing can be performed with user’s routine instead of the
plot script which is provided with the project.

Assume the user has the following Python script, located in /studies :

import matplotlib.pyplot as plt

import os

import json

scheme_list = ["Mac_CM", "Mac_VDF", "Mac"]

cases = []

for scheme in scheme_list:

outputfile = "res_file_" + scheme + ".json"

command = "../hydromockup ../tests/Toro1.json"

# Change values of the config file

command += "\\\n --scheme " + scheme

command += "\\\n --linear_artificial_viscosity_coefficient 0"

command += "\\\n --quadratic_artificial_viscosity_coefficient 0"

command += "\\\n --face_projection " + "upwind"

command += "\\\n --face_projection_for_momentum " + "centered"

command += "\\\n --N 800"

command += "\\\n --mixed_projection_alpha_rho_for_momentum " + "true"

command += "\\\n --dt " + "1.e-5"

command += "\\\n --output_file " + outputfile

# Store configuration for post_proc

cases.append({"outputfile": outputfile, "title": scheme, "scheme": scheme})

# Execute command

os.system(command)

# Plot

p_legend = list()

t_legend = list()

# Exact solution at final time

ref = json.load(open("../References/Toro1.json", "r"))

p,= plt.plot(ref["Position"], ref["Density"], "k-", lw=2)

p_legend.append(p)

t_legend.append("Reference")

# Custom results

for case in cases:

resfile = json.load(open(case["outputfile"], "r"))

data = resfile["results"][-1]["Materials"]["0"]
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terminated_successfully = resfile["terminated_successfully"]

if (terminated_successfully):

p,= plt.plot(data["x"], data["density"])

p_legend.append(p)

t_legend.append(case["title"])

plt.legend(p_legend, t_legend)

plt.title("Density profile")

plt.savefig("density_profile_plot.pdf", format="pdf", bbox_inches='tight')

On the first part it is possible to see the option changes ask by the user, which iterates over some
available schemes. Note that the pre-processing script hydromockup is called. In the second part,
results files are opened and data is plotted in order to have a figure where everything is gathered.
The dictionary enables to keep track of the different cases that are computed ; it could be extended
to host even more options.

4.2.4 Git deposit

At the time of the writing of this report, the project is located on a git deposit, internal to the
LMAG. The name of the deposit is DTN/Collaboratif/rc607753/HydroMockup. Beware, my work
has been pushed on the branch foxbranch to preserve Rémi Chauvin’s code integrity.

Thus, the complete command to clone the project and get the root directory hydromockup

presented earlier is :

bash

git clone -b foxbranch <git_deposit_url>

where the url of the deposit has to be inserted. This should build the architecture presented
earlier. Note that the project’s location might change in a close future. It is to be discussed
with my tutors.
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Chapter 5

Results

5.1 Introduction

5.1.1 Precision about figures

In this section are presented some interesting results obtained with the code, making some parameters
change such as artificial viscosity, the writing of some terms or energy formulation. The goal is to
study schemes performance and behaviour when facing available parameter changes.

Specific energy

Internal Total Momentum alternative

M
o
m
e
n
tu

m

Non-conservative

MacNCVε MacNCVe v ∂(v)
∂x

MacSCVε MacSCVe ∂(v2)
∂x − v ∂(v)

∂x

MacQCVε MacQCVe 1
2
∂(v2)
∂x

MacVDFε MacVDFe ∂(αρv2)
∂x − v ∂(αρv)

∂x

Conservative
MacCMε MacCMe

MacALLOR

Table 5.1: Notation to mention schemes depending on their momentum conservativity and their
energy formulation. Conservativity : total energy - momentum - total energy and momentum

Note that on each output that will be presented, some additional curves will be shown :

• Reference a black bold plot, is the analytical solution (if it exists).

• VDF trust in sky blue, is the output from TRUST VDF scheme, which is the scheme we want
to get as close as possible to. It is a semi-conservative-like scheme.

• PolyMAC, which also comes from TRUST and which is similar to VDF but for polyhedral
meshes.

As it is a convention proceeding that way, only the density profile will be shown when trying to
compare schemes between each other. Other profiles will be shown if necessary. Sometimes, a zoom
is performed on plots, it is always centered on the very first contact discontinuity.

Remark In order to have a trustworthy comparison with TRUST numerical results, we force the
time step to be constant with ∆t = 10−6 and cell number to be N = 800. This will enable to avoid
having different parameters other than the schemes that can change.
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Remark All the plots that are shown below have been produced with the scripts located in direc-
tory hydromockup/studies/Report_post_processing_scripts. I believe the best basis to create
post-processing tools on your own is the script script_1_preliminary_Mac_and_MacCM.py.

5.1.2 Terminology

It is important to know what the used vocabulary designs. For this reason, plots of the density,
velocity, internal energy and pressure for a shock tube problem are shown below. Ellipses show the
regions we will call expansion wave, contact discontinuity and shock wave in the development.

Figure 5.1: Terminology for shocks on the example of an analytical solution of a shock tube test
case
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One thing that is major to note is that a contact discontinuity is a region where only density
and internal energy are discontinuous. In fact it is the region where the two sides of the Riemann
problem collide, thus have same pressure and speed, but obviously different densities.
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5.2 Test cases

For notations, Ω is the domain, N the number of cells, γ the adiabatic coefficient and p∞ the stiffened
gas parameter.

5.2.1 Toro1 test case

Description It is a mono-fluid test case similar to a Sod shock tube, with a side of the Riemann
problem with non zero velocity. It models perfect gas equation of state and does not require small
CFL condition. Final time is chosen to be tf = 0.2.

Motivation This test case is presented in E. Toro’s book[3] and as it is a light shock (pressure ratio
of 101) that TRUST also implements, it seemed a good starting point to check the code is working.
Moreover, as the aim of this internship is to perform shock capture, it is natural to work on a shock
test case. Finally as this test is quite common literature, it makes a good comparison point with
other methods.

Ω [0, 1]
N 800

CFL 0.2
γ 1.4
p∞ 0

Figure 5.2: Simulation parameters

0 ≤ x ≤ 0.3 0.3 ≤ x ≤ 1
Density 1 0.125
Velocity 0.75 0

Int. energy 2.5 2

Figure 5.3: Initial conditions for Toro1 test case

Parameter p∞ being null, the Stiffened Gas equation of state will be the very same as the perfect
gas one. This choice is made to have a simple test case, easier to interpret. The adiabatic index
value is chosen to be 1.4.1

5.2.2 Leblanc test case

Description This test case is a mono-fluid one, similar to Toro1. Its main difference resides in
the strength of the shock it models as a logarithmic scale is required to plot the density profile, with
a pressure ratio of 109. Final time is chosen to be tf = 6.

Motivation As the shock is way stronger than Toro1’s one, this case is generally hard to pass for
most schemes and codes, meaning it can be a great way to push our schemes to their limits in term
of shocks. Moreover, as the elapsed time is much longer, it also tests the stability of the scheme.

Ω [0, 10]
N 800

CFL 0.2
γ 1.667
p∞ 0

Figure 5.4: Simulation parameters

0 ≤ x ≤ 3 3 ≤ x ≤ 10
Density 1 10−3

Velocity 0.1 0
Int. energy 0.1 10−7

Figure 5.5: Initial conditions for Toro1 test case

Again this test case uses the perfect gas equation of state since p∞ is null. The adiabatic
coefficient is set at 1.667.2

1Value γ = 1.4 could refer to a large variety of species : dry air, hydrogen, nitrogen, oxygen, carbon monoxide,
fluorine or chlorine, at room temperature, 20◦c.

2Value γ = 5
3
could refer mostly to perfect gas in the common meaning : helium, neon, argon, krypton, xenon or

radon at room temperature, 20◦c.
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5.2.3 Gaussian advection test case

Ω [−5, 25]
N 800

CFL 0.2
γ 1.4
p∞ 0

Figure 5.6: Simulation parameters

Description This is a density profile transport problem,
which is initialized as a gaussian function. Numerical er-
ror is reached before touching domain’s border. Pressure
and velocity are uniform over the domain and classic Stiff-
ened Gas EOS is used. Final time is tf = 10. Periodic
boundary condition is imposed.

Motivation This test case is made in order to have a
smooth problem with a known analytical solution (for den-
sity profile). The aim is to be able to perform order checks

on the schemes as it contains no shocks.

Initial profiles This test case is all about the density profile, but all variables need to be initialized,
which is done as follows :

ρ0(x) =
1

2
+

1

σ
√
2π
e
−
(x− µ)2

2σ2 (5.1)

(ρε)0(x) =
1

γ − 1
p0(x) (5.2)

p0(x) = 1 (5.3)

v0(x) = 1 (5.4)

where (µ, σ) = (5, 1.0), chosen so that computer error is reached by the gaussian function before
touching the borders and so that the gaussian profile is not too steep.

Note that for an arbitrary time t, the analytical solution of the density profile advection problem
is known and can be expressed thanks to the initial profile as

ρ(t, x) = ρ0(x− v0t) (5.5)

i.e. the initial gaussian profile, transported during some time t at velocity v0. Then, final time tf
can be chosen using the relation

tf =
xf − x0
v0

(5.6)

where x0 = µ in our previous notations, and xf is the x-coordinate on which one wants to have the
transported gaussian centered. For instance, with x0 = 5, xf = 15 and v0 = 1, we get tf = 10.
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5.3 Preliminary results

In this section, we focus on presenting simple and straight forward results to get an intuition on each
scheme behaviour. For this section, all interpolations are done upwind except all needed
density terms in momentum equation which are taken fully centered.

5.3.1 Overview of the schemes

Internal energy formulation Working on test case Toro1, using schemes MacNCVε, MacSCVε,
MacQCVε and MacCMε, the code generates the plots below. The volumic fraction is not shown as
it is a mono-fluid test case, but it is indeed constant at 1 over the domain. The plots have been
generated with script script_1_preliminary_Mac_and_MacCM.py.

Figure 5.7: Toro1 test case under internal energy formulation - plot of the variables of the problem
at t = 0.2 for basic schemes
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Schemes MacQCVε and MacNCVε have really bad performances as their plateaus and drops are

not in-sync at all ; we will abandon them from here. It shows the importance of how the term v ∂(v)
∂x

is discretized, even with equal continuous formulations.

Even if MacCMε and MacSCVε are performing better, a slight shift can be observed on the shock
wave as well as some heavy diffusion on the contact discontinuity. However, the contact discontinuity
plateau is very well captured by MacSCVε, even better than by TRUST schemes. Some point thus
have to be improved to increase our scheme performances or to get closer to TRUST outputs.
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Total energy formulation In this formulation, the specific internal energy equation is replaced
by a specific total energy equation which is supposed to be conservative. This might impact
the overall shock capture. Note that test case Toro1 is still used for this illustration, and script
script_1_preliminary_Mac_and_MacCM.py can be used to reproduce these plots.

Figure 5.8: Toro1 test case under total energy formulation - plot of the variables of the problem at
t = 0.2 for basic schemes
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The major difference is that all schemes appear to have a great phase with the shock wave as
well as a great estimation on the related plateau’s level. Some diffusion can still be observed on the
contact discontinuity, and no improvement is to be seen on the expansion wave.

On the other hand, it is possible to see that MacQCVe and MacNCVe are still performing badly,
meaning we will let them go from now on. Moreover, note that MacCMe which is the fully conser-
vative scheme has a very good accuracy but seems to have less precision on the smooth part of the
problem, the expansion wave.

Overall, all schemes seems to be performing better under total energy formulation. We won’t
take this as a standard since TRUST does not use total energy formulations, but it can be kept in
mind to improve results. This improvement is easily explained by the conservativity of the schemes
under this formulation.

Remark Some zooms on the first contact shock are available at appendix I, for total energy
formulation.

39



5.3.2 Conservativity checks for total energy formulation

In this development, we try to check whether our discretization and implementation preserve the
density, momentum and total energy, as we know that Euler’s equations do. We will use Toro1 test
case to test conservativity.

Notations

For this purpose, we are going to compute the total value of these quantities over the spatial domain,
and see how they evolve in time. As we wish to study the same property for some quantity Φ ∈
{ρ, ρv, ρe}, we define the positive relative error term by :

|EΦ(t)| =

∣∣∣∣∣∣
∫
Ω

(Φ− Φth)(t, x)dx∫
Ω

Φth(t, x)dx

∣∣∣∣∣∣
The term that has no subscript will be the one we compute thanks to our code and the one

with the subscript th will be a theoretic one. For a detailed explanation of the computation of the
theoretic terms, see appendix J.

Outputs

Using the methodology that has been presented just before, we produce some plots using an altered
Python script : script_2_conservativity_plots.py. We use the total energy formulation in or-
der to check total specific energy conservation, but the very same observations can be made with
the internal energy formulation, total energy excepted.
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Figure 5.9: Density positive relative error
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Figure 5.10: Momentum positive relative error
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Figure 5.11: Total energy positive relative error
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We do obtain what we expected : MacCMe is fully conservative but MacSCVe does not preserve
momentum. Conservativity results for internal energy formulation can be found at appendix K.

Numerical interpretation The order of the values can be surprising as it is mainly around 10−15.
In fact, according to Python documentation[22], floating point numbers in Python use double pre-
cision, composed of a 52 bits mantissa3. This means the smallest positive real number that can be
represented is 2−52 ≈ 10−15.65 ; these conservativity plots reach numerical error. Knowing this bias
is important in case one wants to extend the C++ numerical core to deal with a greater precision as a
Python post processing with default double precision will no be sufficient. A custom floating point
number will then have to be used in the Python script. On the shape of the curves, we believe no
additional mathematical interpretation can be made as numerical precision is reached.

5.3.3 Playing with artificial viscosity

This is for those like me at first, who do not know how artificial viscosity acts on the output result.
Using internal energy formulation, internal energy profiles are shown as the effects are the most
visible on these ones. Similar behaviours can be witnessed under total energy formulation. Those
plots have be realized with the script script_3_playing_with_viscosity.py.

Figure 5.12: Internal energy changes depending
on quadratic artificial viscosity value for

MacSCVε
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Figure 5.13: Internal energy changes depending
on quadratic artificial viscosity value for

MacCMε
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It appears quadratic artificial viscosity helps the scheme to converge. As it increases, the ap-
proximation gets closer to the analytical solution. In fact it acts on the scheme stabilization in
case of shocks, particularly for strong shocks. We do not plan on using linear viscosity as it acts
on oscillations, which is an issue we do not have thanks to the upwind interpolation as it already
introduces linear viscosity terms.

3To be exact, double precision uses 1 bit for sign, 11 for exponent and 52 for mantissa.
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5.4 Advanced results

With some discussion with TRUST members and some consideration, we decided to try altering
interpolations and discretizations in our schemes, which are presented hereinafter. Keep in mind
that some bench-marking might have to be performed but we will focus on Toro1 test case.

5.4.1 Mixed momentum density interpolation for MacSCV

This is one of the schemes we worked the most on as it is the closest to TRUST ones. After a meeting
with Antoine Gernschenfeld, instead of interpolating density fully centered, we apply this method

∆xi+ 1
2

[
αk
i+ 1

2
ρki+ 1

2

]
c

vk,n+1

i+ 1
2

− vk,n
i+ 1

2

∆t

+
[
αk
i+ 1

2
ρki+ 1

2

]
u

([
vki+1

]
u
2 −

[
vki
]
u
2 − vki+ 1

2

([
vki+1

]
u
−
[
vki
]
u

))
(5.7)
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(
pki+1 − pki

)
= 0

where advection-linked density is chosen upwind and time-linked is chosen centered. This is how the
American code TRACE[18] does, which TRUST is inspired from. This methods actually accounts for
the different natures of the term (transport vs time integration). By the way, this is the very first
definition we provided for MacSCV in the numerical development at the beginning of this report.
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Figure 5.14: Toro1 test case. On the left, classic plots of density profiles, on the right plots, zoom
on the first contact shock. First line is under internal energy formulation, second line is under total

energy formulation.
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Note that these plots have been made with script_4_MacSCV_split_rho.py. This method
improves the approximation in internal energy formulation case whereas it seems to degrade the
result in case of total energy formulation. This is likely to be due to the introduction of dispersion
error terms with the upwind density terms that account for some of the missing kinetic energy.
This means that when working in the ε version of the schemes, it adds something missing so results
are better whereas when working with e versions, it adds something that the total energy equation
already accounts for i.e. it is an additional error that is not helping. From now on, we use MacSCVε
with mixed momentum density interpolation. It fulfills the goal of the internship to reproduce or
improve TRUST outputs.

5.4.2 Kinetic energy interpolation for MacSCVe

Beware, the scheme is considered under its total energy formulation in this paragraph. We tried to
alter other terms than momentum transport, such as the internal energy. In fact, working under e
version of the scheme, internal energy has to be derived from total and kinetic energies. We thought
about two ways to proceed :
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What we observe is that there is no difference between those two terms when using constant time
step or not. However the use of automatic time step induce a slight shift of the approximation of
the first contact shock to the right. See script_5_MacSCV_totenergy_kinetic_tests.py.

5.4.3 Pressure gradient interpolation for MacSCVe

The pressure gradient in the total energy equation has to be interpolated, we recall here the total
energy equation discretization, with pressure gradient interpolation undefined :
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As pressure is not a conserved quantity, it has different nature as density or energy.
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Figure 5.15: Density profile for Toro1 test case approximated with MacSCVe.
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It is possible to see that there is not big effect on the outcome. However, the plateau liked to the
expansion wave seems to be approximated the best for upwind pressure gradient, which is consistent
physically. On the other hand, the shock wave appears to be great with upwind method.

This means that upwind method is indeed the best, for this test case at least. When dealing with
MacSCVe, pressure gradient will then be kept upwind in the following development. Note that the
script that has been used to produce these plots is script_6_Pressure_gradient_for_MacSCV.py

5.4.4 Momentum transport interpolation in MacCM

Recall that the momentum equation for MacCM scheme is discretized as
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where interpolation for
[
vki
]
∗

[
vki
]
∗ has to be properly defined. In an internal paper4 about PolyMAC

(Mark-and-Cells scheme implemented in TRUST for unstructured meshes), A. Gerschenfeld uses a
custom method to interpolate transport terms. He cuts the transported quantity and the velocity
of transport in two parts, respectively interpolating the first with upwind method and the second
with centered fashion. See script_7_MacCM_totenergy_velocity_tests.py and the C++ source
code about MacCM to give it a try.

Internal energy formulation On the left, the velocity is interpolated as
[
vki
]
u

[
vki
]
u
and on

the right as
[
vki
]
u

[
vki
]
c
. Mixed interpolation seems to introduce some oscillations, which is due to

the centered interpolation, but the shock approximation has a better phase when looking at the
analytical solution.
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Figure 5.16: Toro1 with MacCMε. On the left, fully upwind velocities, on the right, upwind con-
served quantities and centered transport velocity. These are zooms on the shock wave.

Total energy formulation Again, on the left is the fully upwind interpolation and on the right
is the mixed one. Under total energy formulation, oscillations do not appear when using mixed

4A. Gerschenfeld, Y. Gorsse, 2021, Development of a robust multiphase flow solver on general meshes ; Application
to sodium boiling at the subchannel scale, Université Paris-Saclay, CEA, Service de Thermo-hydrolique et de Mécanique
des Fluides
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Figure 5.17: Toro1 with MacCMe. On the left, fully upwind velocities, on the right, upwind
conserved quantities and centered transport velocity.

interpolation. This is likely to be due to energy conservation, thus probably to kinetic energy or
internal energy conversion. Moreover, total energy case shows a sharper capture of the shock, which
is a behaviour that could be very useful to increase precision.

5.4.5 Kinetic energy interpolation for MacCMe

As we have done for MacSCVe, it is possible to choose different ways of getting internal energy back
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These two methods show no difference on the output result, both with constant time step or adaptive
one.

5.4.6 Pressure gradient interpolation for MacCMe

In the same idea as for MacSCVe, it is possible to try interpolating the pressure gradient in different
ways. Plots have been generated with script_9_Pressure_gradient_for_MacCM.py.
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Figure 5.18: Toro1 with MacCMe. Density profile, zoomed on the shock wave (right), comparison
of the different gradient interpolations (upwind, centered, downwind).
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We observe almost no difference between the different choices. There is a small improvement on
the shock wave, where the use of a downwind pressure gradient sharpens slightly the shock and is
less diffusive.

5.5 Miscellaneous results

Here are presented some results that could not fit in the previous parts but that remain very
interesting both for their performance or their mathematical aspects.

5.5.1 MacVDFε performance

Recall that this scheme is different from MacSCVε because of its momentum equation continuous
formulation. In fact, it keeps momentum as a whole variable inside transport terms, as it is done in
TRACE[18]. This might be the closest formulation of the scheme to what is done in TRUST but it is
only a guess as no documentation of it exists.
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Figure 5.19: Toro1 with MacVDFε. Density profile, zoomed on the shock wave. On the left
comparison with MacSCVε with mixed density interpolation in momentum

We witness on the left plot that this scheme gets really close to the TRUST results for VDF
TRUST ; a zoom is performed on the shock wave as it is a critical region, but the schemes have
almost exact same results.

On the right plot are compared MacSCVε and MacVDFε, which have strictly different discretiza-
tions. It is possible to see that they seem to produce equal approximations. With these two plots,
the goal of the internship is reached as we managed to reproduce TRUST output and even to improve
it. This is at the cost of having a fully explicit scheme for now, with fixed time step ∆t = 10−6.
Plots have been produced with script_10_MacVDF.py.

5.5.2 MacALlor results

This is the scheme that has been provided by Antoine Llor, which can be found in appendix E and
its total energy conservativity proof in appendix F.

It seems useful to recall that this scheme only uses upwind interpolation for all variables. Thanks
to the diffusion term Dn

i , this scheme is conservative for total energy and should capture plateaus
very well. See script script_11_MacALlor.py to reproduce those results.
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Figure 5.20: Toro1 with MacALlor. Density profile, zoomed on the shock wave on right plot.
Comparison with PolyMAC and VDF from the CEA code.

We see that indeed this scheme is very efficient as plateaus and Hugoniot relations are verified.
However, this is at the cost of creating oscillations on the shock wave, which can be witnessed on
all other variables plots. Thanks to the use of artificial viscosity, these oscillations can be taken down.
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Figure 5.21: Density profile on Toro1 test case with MacALlor scheme with linear viscosity 0.4.
Zoom on the shock wave.

As this is a slight oscillation but the shock is stable, we use only linear viscosity. The effect is not
deniable. This scheme is very efficient as even without artificial viscosity, it is more efficient than
our previous ones such as MacSCV or MacCM, both in their internal and total energy formulations.

The frustrating part is that this scheme would require a heavy work to be implemented in the
TRUST plateform as it has a very different nature. For now, we only work under 1D framework, but
TRUST can go up to 3D, meaning mathematical and programming issues such as numerical error
management, stability and validation begin to be quite complicated.
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5.5.3 Leblanc test case with best MacSCV version for Toro1

Leblanc test case has been introduced at the beginning of this chapter and is a strong shock. To
test it we will work with my custom script script_12_Leblanc_test_case.py. We use the version
of MacSCV that has mixed interpolation for its density terms in the momentum equation.
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Figure 5.22: Density profile with leblanc test case using MacSCV scheme under internal and total
energy formulations.

Here are plotted the results for the specific internal and total energy formulations of the scheme.
The internal formulation, which we found to be similar to VDF from TRUST earlier, seems to still
have slightly better performances as the shock wave approximation appears closer. On the total
energy formulation hand, even if the contact discontinuity is not well captured, the shock wave is.

In order to have a comparison point with TRUST we chose a fixed time step ∆t = 10−4, bigger
than before (10−6) since this test case runs on a longer period. Moreover, our current adaptive time
step blows up on this test case5.

5.5.4 Second order accuracy extension

It remains to try our second order methods. In fact, even in the very first Mac scheme, the pressure
gradient is of order 2, meaning it is likely that what we considered to be a method of order 1 is
actually intermediary between order 1 and 2.

To get the order of the scheme, we use a smooth test case, the Gaussian advection one. It is
useful as the exact solution is known so the approximation error can be known exactly. This test
case is repeated for different numbers of cells : N ∈ {2k, k ∈ [[5; 15]]} i.e. N = 32, . . . , 32768. We
use the L∞ norm6 to compute the error, meaning we only focus on the very top of the gaussian curve.

We see that the order 1 method seems to have a true order 1 for convergence, meaning it passes
this test. However order 2 is a bit deceiving as this test case is smooth meaning that limiters should

5First computed times steps are of order 10−2, 10−3 but it then drops to less than 10−12 which is the threshold
value we have chosen to make the code exit.

6Recall that for a vector v ∈ Cn with v = (v1, . . . , vn), this norm is defined as ∥v∥∞ = max
1≤i≤n

|vi|.
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Figure 5.23: MacSCVe convergence order plots.

not activate. In fact, having an order of 1.5 instead of 2 for a smooth case means that limiters are
activating, but they should not.

These results are not satisfying, but time is missing in my internship to further investigate this
issue. Note that to reproduce this order plots, script script_13_Gaussian_advection_order2.py
should be used or modified.
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Chapter 6

Conclusion and outlooks

6.1 Outlooks

As this report is very long, here is a list of possible tracks to follow for pursuing the code development
as well as the schemes investigations :

• Validate the code on a wide range of test cases (sedimentation, double relaxation, complex
transport problems, stronger shocks, gravity etc.)

• Check for missing gravity source terms as we developed the homogeneous version of the equa-
tions to simplify the study.

• Implement closure conditions to extend the code to multi-fluid problems. The code has been
developed with this aim, but closures and test cases are missing for now.

• Solve order 2 issues.

• Extend the schemes to 2D or 3D frameworks.

• Extend the schemes to unstructured meshes, or if in 1D, to irregular ones.

• Use implicit or ICE time incrementation.

6.2 Conclusion

This internship enabled to develop a large variety of numerical schemes to solve mono-fluid Euler’s
equations under internal or total energy formulation. The difference between those schemes is either
how the equations are written and modified under their continuous form, or the way variables are
interpolated or reconstructed.

For instance, the main goal of the internship that was to approach TRUST results has been reached
with the use of a so-called semi-conservative scheme, MacSCVε (and MacVDFε). This scheme even
goes beyond VDF TRUST performances as it is centered on the shock wave in the case of Toro1 test
case.

This internship also showed that taking care of conservativity is very important when dealing
with shocks. In fact, all schemes seems to produce better results under their most conservative
versions.

Having in mind this internship is driven by the constraint of changing TRUST schemes in simple
ways, it seems difficult to really improve results while keeping non conservative formulations. For
instance, even if Godunov schemes are designed to work with shocks, Mac schemes were designed
for non compressible modes and do perform better in this case.
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Appendix A

Conservativity equivalency proof

Let Ω ⊂ Rn closed and T = [0, T ] a time interval with T > 0. Let ϕ : T × Ω → Rn be a mesurable
function with respect to x ∈ Ω, differentiable with respect to t ∈ T , and assume there exists a

measurable function ψ : Ω → Rn such that ∀t ∈ T , ∥∂(ϕ)
∂t (t, x)∥ ≤ ∥ψ(x)∥ for any norm suiting Rn.

Such ϕ will represent the quantity that is to be conserved. Moreover, let F : Rn → Rn be a C1(Rn)
function representing the flux. Then composition F ◦ ϕ is well defined.

Assume the following relation holds between ϕ and its flux through the boundary :

∂

∂t

∫
Ω

ϕ(t, x)dx = −
∫
∂Ω

F (ϕ(t, x)) · ndx (A.1)

This relation is well defined as ϕ is measurable on Rn. As ϕ is differentiable with respect to
time and its time partial derivative is uniformly bounded by a measurable function of Ω, which we
called ψ in our hypothesis, derivative and integral can be inverted. This process is applied on the
left member of previous equality leading to :

∂

∂t

∫
Ω

ϕ(t, x)dx =

∫
Ω

∂(ϕ)

∂t
(t, x)dx (A.2)

On the other hand, as the composition F ◦ϕ is well defined, Ω being closed and F ∈ C1(Rn), the
Green-Ostrogradski theorem can be used to turn the boundary integral into a whole Ω one, for the
right member of the very first equation :

−
∫
∂Ω

F (ϕ(t, x)) · ndx = −
∫
Ω

∇x · F (ϕ(t, x))dx (A.3)

It lasts to put both transformed terms from equation A.2 and A.3 together to make appear the
weak formulation of the relation :∫

Ω

(
∂(ϕ)

∂t
(t, x) +∇x · F (ϕ(t, x))

)
dx = 0 (A.4)

Finally, as this relation holds for any closed Ω ∈ Rn, the integral sign can be taken down to get :

∂(ϕ)

∂t
(t, x) +∇x · F (ϕ(t, x)) = 0 (A.5)

To conclude on the equivalence, the reciprocal follows directly from the smoothness and differ-
entiability properties of the function, using the very same theorems, meaning that :

∂(ϕ)

∂t
(t, x) +∇x · F (ϕ(t, x)) = 0 ⇐⇒ ∂

∂t

∫
Ω

ϕ(t, x)dx = −
∫
∂Ω

F (ϕ(t, x)) · ndx (A.6)
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Appendix B

Euler’s total energy formulation

The overall idea is to use the Momentum to build a the kinetic energy equation. Then the addition
of kinetic and Internal Energy equations builds the total energy equation as no other form of energy
has to be considered here.

Start by multiplying the Momentum equation by v to get

v
∂(ρv)

∂t
+ v

∂(ρv2)

∂x
+ v

∂(p)

∂x
= 0 (B.1)

Notice that :

• v ∂(ρv)
∂t = ∂(ρv2)

∂t − ρv ∂(v)
∂t

• v ∂(ρv2)
∂x = ∂(ρv3)

∂x − ρv2 ∂(v)
∂x

Replace corresponding terms in equation B.1 to get

∂(ρv2)

∂t
− ρv

∂(v)

∂t
+
∂(ρv3)

∂x
− ρv2

∂(v)

∂x
+ v

∂(p)

∂x
= 0 (B.2)

Using the momentum equation under its non conservative formulation and multiplying it by v,
it is possible to show that

ρv
∂(v)

∂t
+ ρv2

∂(v)

∂x
= −v ∂(p)

∂x
(B.3)

meaning the kinetic energy equation is expressed as

1

2

∂(ρv2)

∂t
+

1

2

∂(ρv3)

∂x
+ v

∂(p)

∂x
= 0 (B.4)

Finally, adding the kinetic energy equation to the internal energy equation shows a one-to-one
correspondence between derivatives enabling to build total energy back. As we have no source term,
the total specific energy equation is formulated as

∂(ρ(ε+ 1
2v

2))

∂t
+
∂(ρ(ε+ 1

2v
2)v)

∂x
+
∂(pv)

∂x
= 0 (B.5)

Thanks to what has been proven in paragraph 2.1.2, we now know that Euler’s equations are
conservative for the density, momentum and the total energy.
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Appendix C

Multi-fluid total energy Euler
equation proof

Consider the multi-fluid momentum and specific internal energy Euler equations :

∂(αkρkvk)

∂t
+
∂(αkρkvkvk)

∂x
+ αk ∂(p

k)

∂x
= 0 (Eρv)

∂(αkρkεk)

∂t
+
∂(αkρkεkvk)

∂x
+ pk

(
∂(αk)

∂t
+
∂(αkvk)

∂x

)
= 0 (Eε)

As for the mono-fluid case, multiply the momentum equation by v. Then, as the aim is to

build total energy transport terms, note that vk ∂(αkρkvk)
∂t = ∂(αkρkvkvk)

∂t − αkρkvk ∂(vk)
∂t and see that

vk ∂(αkρkvkvk)
∂x = ∂(αkρkvkvkvk)

∂x − αkρkvkvk ∂(vk)
∂x .

Replace these expressions in equation v(Eρv) to get the relation :

∂(αkρk(vk)2)

∂t
− αkρkvk

∂(vk)

∂t
+
∂(αkρk(vk)3)

∂x
− αkρk(vk)2

∂(vk)

∂x
+ αkvk

∂(pk)

∂x
= 0 (v(Eρv))

To build total energy terms, terms with specific internal energy are needed as well as some terms
containing 1

2v
kvk. By concatenating both equations with the combination (Eε) +

1
2(v(Eρv)), some

total energy transport terms appear :

∂(αkρkek)

∂t
+
∂(αkρkekvk)

∂x
−1

2
αkρkvk

∂(vk)

∂t
−1

2
αkρk(vk)2

∂(vk)

∂x
+
1

2
αkvk

∂(pk)

∂x
+p

∂(αk)

∂t
+p

∂(αkvk)

∂x
= 0

((Eε) +
1
2v(Eρv))

Thanks to previous development, where a none conservative formulation of the multi-fluid mo-
mentum equation was derived, equation 3.14, we have that :

1

2
αkρkvk

∂(vk)

∂t
+

1

2
αkρk(vk)2

∂(vk)

∂x
= −1

2
αkvk

∂(pk)

∂x

One can note that there already is such a term inside the previous equation, meaning that the
injection will make the fraction disappear. Moreover, an other term in the equation completes it to
build a conservative term, leading to the final expression :

∂(αkρkek)

∂t
+
∂(αkρkekvk)

∂x
+
∂(αkvkpk)

∂x
+ pk

∂(αk)

∂t
= 0 (Ee)
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Appendix D

Proof of unconditional instability
for transport problem with
centered space scheme

Given a function f : ]0, T [×R → R and a constant velocity c > 0, the associated 1D transport
problem, without boundary conditions nor source term is expressed as :

∂(f)

∂t
+ c

∂(f)

∂x
= 0 (D.1)

We use standard Euler forward for time stepping method, but use centered finite differences for
advection term. Centered FD for a gradient is of order 2 and leads to the following scheme for the
advection problem :

un+1
j − unj

∆t
+ c

unj+1 − unj−1

2∆x
= 0 (D.2)

We know want to perform Von-Neumann analysis as this is a linear PDE, meaning it is a suiting
framework. We set unj = Γneipj∆x as the standard Von-Neumann analysis advise. After quite few
simplifications, we get that

Γ = 1 + c
∆t

2∆x

(
eip∆x − e−ip∆x

)
(D.3)

= 1 + iCsin(p∆x) (D.4)

where C = c
∆t

∆x
. Von-Neumann analysis provides a criteria for a scheme to be stable i.e. for

the error to be bounded at constant time and space step. This criteria is formulated as |Γ| < 1.
However in our case we see that |Γ| ≥ 1 meaning that the scheme is always unstable, independently
of the time or space step.

In a more intuitive way, the centered scheme takes some advance on the information propagation,
in the sense that it uses pieces of information that are not involved in the value it tries to compute.
In some way, the scheme does not respect the behaviour of the quantity it approximates due to the
global shape of the equation.
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– 1/4 –

1 1D time-centered space-staggered Eulerian scheme

1.1 Action integral

Eulerian, hence with mass transport constraint, time centered, space centered on cells i
except momentum on nodes i + 1/2, first order in time and space

A=
∑

n,i

��
1
2 mn

i+1/2
(un

i+1/2
)2 −mn

i E(ρ
n
i , sn

i )
�
∆tn+1/2

+φn
i

�
mn+1

i −mn
i +ρ

n
i+1/2

un
i+1/2
∆tn+1/2 −ρn

i−1/2
un

i−1/2
∆tn+1/2
�

+τn
i

�
mn+1

i sn+1
i −mn

i sn
i +ρ

n
i+1/2

sn
i+1/2

un
i+1/2
∆tn+1/2 −ρn

i−1/2
sn

i−1/2
un

i−1/2
∆tn+1/2
��

, (1)

with cell masses, node masses, upwinding factors, upwinded node densities, and upwinded
node entropies

mn
i = ρ

n
i hi , (2a)

mn
i+1/2
= 1

2(m
n
i+1 +mn

i ) , (2b)

σn
i+1/2± = H(±un

i+1/2
) , (2c)

ρn
i+1/2
= ρn

i σ
n
i+1/2+

+ρn
i+1σ

n
i+1/2− , (2d)

ρn
i+1/2

sn
i+1/2
= ρn

i sn
i σ

n
i+1/2+

+ρn
i+1sn

i+1σ
n
i+1/2− . (2e)

It may appear interesting for later derivations to define node masses as mn
i+1/2
= 1

2ρ
n
i+1/2
(hn

i+1+
hn

i ) so as to match terms in the transport operators—this is akin to what happens in the cell
centered scheme of Vazquez-Gonzalez et al. However, this definition is here inconsistent with
cell masses.

1.2 Euler–Lagrange equations

Zero variation with respect to independent variables φn
i , τn

i , un
i+1/2

, ρn
i , and [ρs]ni (this last

combination decouples the equation on τn
i )

0= (mn+1
i −mn

i )/∆tn+1/2 +ρn
i+1/2

un
i+1/2
−ρn

i−1/2
un

i−1/2
, (3a)

0= (mn+1
i sn+1

i −mn
i sn

i )/∆tn+1/2 +ρn
i+1/2

sn
i+1/2

un
i+1/2
−ρn

i−1/2
sn

i−1/2
un

i−1/2
, (3b)

0= mn
i+1/2

un
i+1/2
+ (φn

i+1 −φn
i )(ρ

n
i σ

n
i+1/2+

+ρn
i+1σ

n
i+1/2−) , (3c)

0= 1
2hi[(u

n
i+1/2
)2 + (un

i−1/2
)2]− hi(e

n
i + pn

i /ρ
n
i − T n

i sn
i ) + hi(φ

n−1
i −φn

i )/∆tn+1/2

+ (φn
i −φn

i+1)σ
n
i+1/2+

un
i+1/2
+ (φn

i−1 −φn
i )σ

n
i−1/2−u

n
i−1/2

, (3d)

0= hi T
n
i + hi(τ

n−1
i −τn

i )/∆tn+1/2

+ (τn
i −τn

i+1)σ
n
i+1/2+

un
i+1/2
+ (τn

i−1 −τn
i )σ

n
i−1/2−u

n
i−1/2

. (3e)
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Appendix F

Proof of MacALlor total energy
conservativity

In this appendix, we will prove that the scheme provided by A. Llor is conservative for total energy,
even if its writing does not seem to be. We keep A. Llor’s notations and we define total energy to
be

En
i = mn

i e
n
i +

1

2
mn

i+ 1
2
(uni+ 1

2
)2 (F.1)

Recall that there are N cells, meaning N + 1 interfaces. We will assume that undefined values are
null. As MacALlor scheme is based on interpolation of all values to the interfaces, it is natural to
perform the discrete integration on the dual mesh i.e. to consider interface-centered cells rather than
primal cells. This changes the summation to be between 0 and N rather than 1 and N .

Proving a scheme is conservative for total energy returns to proving that the total energy deriva-
tive is either null or only depends on boundary fluxes. Thus we need the total energy equation
which we build thanks to the internal energy one and the kinetic energy one. A discrete integration
is performed over it leading to

N∑
i=0

En+1
i − En

i

∆tn+
1
2

= −
N∑
i=0

(
ρni+ 1

2
eni+ 1

2
uni+ 1

2
− ρni− 1

2
eni− 1

2
uni− 1

2

)
+

N∑
i=0

Dn
i (F.2)

−1

2

N∑
i=0

(pni + qni )
(
un+1
i+ 1

2

− un+1
i− 1

2

+ uni+ 1
2
− uni− 1

2

)
(F.3)

−1

4

N∑
i=0

(
ρni+ 3

2
(uni+ 3

2
)3 − ρni− 1

2
(uni− 1

2
)3
)

(F.4)

−1

4

N∑
i=0

ρni+ 3
2
uni+ 3

2

(
un+1
i+ 1

2

− uni+ 3
2

)(
uni+ 3

2
− uni+ 1

2

)
(F.5)

+
1

4

N∑
i=0

ρni− 1
2
uni− 1

2

(
un+1
i+ 1

2

− uni− 1
2

)(
uni− 1

2
− uni+ 1

2

)
(F.6)

−1

2

N∑
i=0

(
pni+1 + qni+1 − pni − qni

) (
un+1
i+ 1

2

+ uni+ 1
2

)
(F.7)

The idea is now to try cancel terms and simplify this whole expression to get the remainder
shape. Let us start with the green terms that we denote P .
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P =− 1

2
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i=0

(pni + qni )
(
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)
=
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(shift indices)

Then P is a vanishing term. Going to the blue term, that will be denoted Q, it can be simplified
according to the following development.
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Thus Q is also completly vanishing. It lasts to work on orange term denoted as R. Cancelling

null terms and using telescoping principle :

R =

N∑
i=1

(
ρni+ 1

2
eni+ 1

2
uni+ 1

2
− ρni− 1

2
eni− 1

2
uni− 1

2

)
= ρnN+ 1

2
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2
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2
− ρn1

2
en1

2
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2

And finally purple term denoted as S which leads to this after using the same tricks as before :

S = ρnN+ 1
2
(unN+ 1

2
)3 − ρn1

2
(un1

2
)3
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Appendix G

Example of configuration file on
Toro1.json

{

"mesh": {

"Xmin": 0.0,

"Xmax": 1.0,

"N": 10,

"nb_mat": 1

},

"@help : scheme" : "Mac, Mac_CM, Mac_ALlor, Mac_VDF are available values",

"scheme": "Mac",

"linear_artificial_viscosity_coefficient": [1.0],

"quadratic_artificial_viscosity_coefficient": [2.0],

"@help : face_projection" : "upwind or centered",

"face_projection" : "upwind",

"@help : face_projection_for_momentum" : "upwind or centered. Projection for variables in momentum equation",

"face_projection_for_momentum" : "upwind",

"@help : dt" : "If negative, automatic time step is computed. If positive, time step remains constant.",

"dt" : -1.0,

"@help : power_term_type" : "scv, ncv or qcv",

"power_term_type" : "scv",

"@help : mixed_projection_alpha_rho_for_momentum" : "Use different densities in momentum equation

(the time derivative related upwind, other centered).",

"mixed_projection_alpha_rho_for_momentum" : true,

"@help : total_energy_formulation" : "Choose to work under total energy

formulation or not (total or specific internal one)",

"total_energy_formulation" : true,

"@help : pressure_projection_for_total_energy" : "upwind, centered or downwind",

"pressure_projection_for_total_energy" : "upwind",

"@help flux_limiter" : "minmod, superbee or umist",

"flux_limiter" : "minmod",

"@help : appx_order" : "1 or 2",

"appx_order" : 1,

"xSeparation": 0.3,

"alpha_L": [1.0],
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"rho_L": [1.0],

"eps_L": [2.5],

"u_L": [0.75],

"alpha_R": [1.0],

"rho_R": [0.125],

"eps_R": [2.0],

"u_R": [0.0],

"gamma": [1.4],

"Pi": [0.0],

"gravity_source_term": [0.0],

"final_time": 0.2,

"cfl": 0.2,

"@help : leftBC / rightBC" : "None = boundary variable values is copy pasted

at each time step (sort of Dirichlet condition",

"leftBC": "None",

"rightBC": "None",

"@help : leftBCValue / rightBCValue": "List for [alpha, rho, v, eps] BC values",

"leftBCValue": [

[0.0, 0.0, 0.0, 0.0]

],

"rightBCValue": [

[0.0, 0.0, 0.0, 0.0]

],

"output_file": "Results/Toro1.json",

"output_period": 0.05,

"conservativity_filename" : "Results/conservativity_data.txt"

}
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Appendix H

Example of result file

To avoid adding a dozen pages to this report, result file is presented in two columns. Columns that
are on a same page are consecutive : read from top left to bottom left, then top right to bottom
right, then go to next page.

{

"info": {

"commit": "3e1e47074d3ed...5d09d600a7f",

"sources_have_been_modified": true,

"inputdata": {

"mesh": {

"Xmin": 0.0,

"Xmax": 1.0,

"N": 10,

"nb_mat": 1

},

"scheme": "Mac",

"linear_artificial_viscosity_coefficient": [0.0],

"quadratic_artificial_viscosity_coefficient": [0.0],

"face_projection": "upwind",

"face_projection_for_momentum": "centered",

"dt": 1e-05,

"power_term_type": "scv",

"mixed_projection_alpha_rho_for_momentum": true,

"total_energy_formulation": false,

"pressure_projection_for_total_energy": "upwind",

"flux_limiter": "minmod",

"appx_order": 2,

"xSeparation": 0.3,

"alpha_L": [1.0],

"rho_L": [1.0],

"eps_L": [2.5],

"u_L": [0.75],

"alpha_R": [1.0],

"rho_R": [0.125],

"eps_R": [2.0],

"u_R": [0.0],

"gamma": [1.4],

"Pi": [0.0],

"gravity_source_term": [0.0],

"final_time": 0.2,

"cfl": 0.2,

"leftBC": "None",

"rightBC": "None",

"leftBCValue": [[0.0,0.0,0.0,0.0]],

"rightBCValue": [[0.0,0.0,0.0,0.0]],

"output_file": "Results/Toro1_Mac_scv_false_2_.json",

"output_period": 0.2,

"conservativity_filename": "Results/cv_data.txt"

}

},

"results": [

{

"Iteration": 0,

"Time": 0,

"dt": 1e-05,

"Materials": {

"0": {

"x": [

0.05,

0.15,

0.25,

0.35,

0.45,

0.55,

0.65,

0.75,

0.85,

0.95

],

"density": [

1,

1,

1,

0.125,

0.125,

0.125,

0.125,

0.125,

0.125,

0.125

],

"alpha_rho": [

1,

1,

1,

0.125,

0.125,

0.125,

0.125,

0.125,

0.125,

0.125

],

"alpha": [
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1,

1,

1,

1,

1,

1,

1,

1,

1,

1

],

"eps": [

2.5,

2.5,

2.5,

2,

2,

2,

2,

2,

2,

2

],

"pressure": [

1,

1,

1,

0.1,

0.1,

0.1,

0.1,

0.1,

0.1,

0.1

],

"sound_speed": [

1.18321595661992,

1.18321595661992,

1.18321595661992,

1.05830052442584,

1.05830052442584,

1.05830052442584,

1.05830052442584,

1.05830052442584,

1.05830052442584,

1.05830052442584

],

"entropy": [

-2.22044604925031e-16,

-2.22044604925031e-16,

1.77635683940025e-16,

0.608633065357724,

0.608633065357724,

0.608633065357724,

0.608633065357724,

0.608633065357724,

0.608633065357724,

0.608633065357724

],

"Xnode": [

0,

0.1,

0.2,

0.3,

0.4,

0.5,

0.6,

0.7,

0.8,

0.9,

1

],

"velocity": [

0.75,

0.75,

0.708333333333333,

0.333333333333333,

0,

0,

0,

0,

0,

0

]

}

}

},

{

"Iteration": 20000,

"Time": 0.2,

"dt": 9.9999999407796e-06,

"Materials": {

"0": {

"x": [

0.05,

0.15,

0.25,

0.35,

0.45,

0.55,

0.65,

0.75,

0.85,

0.95

],

"density": [

1,

0.909802159078679,

0.794914385605233,

0.704568777946993,

0.641394863817984,

0.565241892621089,

0.330122758392609,

0.158083209268394,

0.127418651498011,

0.125

],

"alpha_rho": [

1,

0.909802159078679,

0.794914385605233,

0.704568777946993,

0.641394863817984,

0.565241892621089,

0.330122758392609,

0.158083209268394,

0.127418651498011,

0.125

],

"alpha": [

1,

1,

1,

1,

1,

1,
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1,

1,

1,

1

],

"eps": [

2.5,

2.40918378345368,

2.23101926353533,

2.15291356649728,

2.36148000272658,

2.77127867543434,

2.9852818419054,

2.23944818841712,

2.01574245903956,

2

],

"pressure": [

1,

0.876752243121399,

0.709387722858652,

0.606750272228995,

0.605856457903083,

0.626577121393187,

0.394203790491671,

0.141607662646108,

0.102737274359242,

0.1

],

"sound_speed": [

1.18321595661992,

1.1615261162514,

1.11775256098109,

1.09801256697657,

1.14996904372548,

1.24575922964401,

1.29296474486624,

1.11986203860725,

1.06245742364678,

1.05830052442584

],

"entropy": [

-2.22044604925031e-16,

0.000808523484257528,

-0.0220238375005495,

-0.00940092959053934,

0.120641810214333,

0.331218701863083,

0.620719709338183,

0.627792256645428,

0.608807719872706,

0.608633065357724

],

"Xnode": [

0,

0.1,

0.2,

0.3,

0.4,

0.5,

0.6,

0.7,

0.8,

0.9,

1

],

"velocity": [

0.763647427754095,

0.844450414681312,

0.991261323687371,

1.15115679863026,

1.31243348598205,

1.33828956104827,

0.965256008344546,

0.379248902719932,

0.057623838096813,

0.00207640678510553

]

}

}

}

],

"terminated_successfully": true

}
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Appendix I

Zooms on first contact shock for
first version of the schemes

Figure I.1: Toro1 test case under total energy formulation - plot of the variables of the problem at
t = 0.2 for basic schemes
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These plots confirm the conclusions made in the original paragraph that are : MacSCVe does
perform very well and MacCMe seems fully conservative. In fact, on this shock, MacCMe has
a logistic function profile which is centered on the shock. This is a good characteristic for high
resolution computations.
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Appendix J

Detailed methodology for
conservativity checking

Here is shown how to compute the error for the density integral, but it could be applied with the
exact same procedure for the other conserved quantities. For instance, consider Eρ, defined as a
function of time, and assume Ω = [0, 1]. The theoretic part of the integral is obtained thanks to the
density equation, as follows :

∂(ρ)

∂t
+
∂(ρv)

∂x
= 0

i.e.
∂

∂t

∫
Ω

ρ(t, x)dx = −[ρv(x)]10

i.e.

∫
Ω

ρ(t, x)dx =

∫
Ω

ρ(t = 0, x)dx− t[ρv(x)]10

Boundary values are actually initial values of left and right states meaning that we can rewrite
[ρv(x)]10 as [ρRvR − ρLvL] to take into account the left and right states of the Riemann problem.
Using either the density equation, the momentum or the total energy one (see appendix B), such a
method can be derived for all the quantities Euler’s equations are supposed to preserve, leading to
the theoretic term :

Density :

1∫
0

ρth(t, x)dx =

1∫
0

ρth(t = 0, x)dx− (ρRvR − ρLvL) t (J.1)

Momentum :

1∫
0

(ρv)th(t, x)dx =

1∫
0

(ρv)th(t = 0, x)dx−
(
ρRv

2
R + pR − ρLv

2
L − pL

)
t (J.2)

Total energy :

1∫
0

ρeth(t, x)dx =

1∫
0

ρ(ε+
1

2
v2)th(t = 0, x)dx (J.3)

−
(
ρR(εR +

1

2
v2R) + pRvR − ρL(εL +

1

2
v2L)− pLvL

)
t

Thank to this method, there is no need to use a solver, meaning no additional numerical noise is
introduced. Thus, up to the computer’s numerical precision, this method is the closest to the exact
solution.
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For the integration over the domain, no particular issue has to be handled for mass and total
energy whereas momentum will create some. In fact, if we were to integrate over the domain to have
the overall momentum, the interior would not cause any problem however the boundary would as
velocity is staggered.

· · ·

· · ·
• • • •

1
2

3
2 N − 1

2 N + 1
2

1 N

Figure J.1: Integration over the domain

In fact, we need to integrate over whole cells meaning that if integrating at node 1
2 , half the dual

cell’s volume would not exist. Thus, integration starts at node 3
2 and ends at node N − 1

2 (see grey
region). However, some volume is still missing in the integral for nodes 1

2 and N + 1
2 . Then, adding

only half their volume can help correcting this missing quantity, meaning that we still integrate over
the dual mesh (for momentum only) but add half their weight :

1∫
0

ρvdx ≈
N−1∑
i=1

(
ρi+ 1

2
vi+ 1

2

)
+

∆x

2
(ρLvL + ρRvR) (J.4)
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Appendix K

Conservativity results for internal
energy formulation

The interest in having those plots is to see the difference with total energy formulation. In fact,
Euler equations do not preserve specific internal energy as internal energy can be converted in kinetic
one, creating entropy.
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Figure K.1: Density positive relative error in
time for internal energy formulation
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Figure K.2: Momentum positive relative error in
time for internal energy formulation
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Figure K.3: Total energy positive relative error in time for internal energy formulation

We witness that density is preserved and we have the same results as before for the momentum.
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sciences de Berlin, 1757. Euler creates so-called Euler’s equations, for incompressible fluids, thus only with
momentum conservation equation.

[5] Henri Navier. Sur les lois du mouvement des fluides, volume 6, pages 389–440. Mémoires de l’Académie royale
des Sciences de l’Institut de France, 1827. Navier introduces viscosity in Euler’s equation.

[6] Melvin R. Baer and J. W. Nunziato. A two-phase mixture theory for the deflagration-to-detonation (ddt)
transition in reactive granular materials. Int. J Multiphase Flow, 12(6):861–889, Frebruary 1986. Fluid and
Thermal Sciences Department, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.

[7] Fabien Crouzet, Frédéric Daude, Pascal Galon, Philippe Helluy, Jean-Marc Hérard, Olivier Hurisse, and Yujie
Liu. Approximate solutions to the Baer-Nunziato model. ESAIM Proceedings, 40:63–82, July 2013. hal-01265213.

[8] Khaled Saleh. Analyse et Simulation Numérique par Relaxation d’écoulements Diphasiques Compressibles,
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