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1 Introduction

1.1 Aim of the project

In the framework of this second year of Master, a scientific knowledge and methodology shall be developed and
acquired. For this reason, the Wavelet course asks for the mathematical analysis of a recent article, including
the reproduction of some of the numerical methods and of the results that are presented. In addition, a critic
of the considered article shall be done.

1.2 Summary of the article

The main source for this report is due to R. M. Pereira, R. Nguyen van yen, M. Farge, and K. Schneider
[1]. It presents a method to filter on the fly approximations to 1D Burgers and 2D Euler equations in their
Galerkin-truncated formulation, using translation invariant complex valued wavelets called dual trees (or
Kingslets after the name of N. Kingsbury, their inventor [2]) as well as real valued wavelets. Such a method
is performed using a threshold which is updated at each time step, to discard so-called incoherent wavelet co-
efficient (CVS1 method presented initially here [3]). Such filtering is in fact needed as the Galerkin-truncated
Burgers and Euler equations, when solved numerically, makes some resonance phenomena appear on smooth
parts of the approximations as shown in [4], which are purely due to numerical methods and shall be sup-
pressed.

On the one hand, some complex valued wavelet are used, in order to benefit from their shift-invariant
property. It enables to introduce a dissipation mechanism which the Galerkin-truncation method deletes but
which is needed to kill resonance phenomenons. On the other hand, a similar method is suggested using real
valued wavelets to avoid the high redundancy of dual trees, with the introduction of the so-called safety zone.
This zone accounts for the microscopic oscillations as well as for the wave displacement and enables to get
satisfying results.

To evaluate the performance of their method, authors chose to express relative error with respect to the
known solution to 1D Burgers equation, whereas for 2D Euler equation, a quantitative observation on the
Laplacian of the vorticity is made to witness filtering effects.

1.3 Galerkin truncation

As the reader is likely to have understood, resonance phenomena occurring when solving Burgers or Euler
equations in their Galerkin-truncated version are purely due to numerical methods and shall be removed.
This leads to asking what is this method and why it is used while posing that much problems, on equations
that can be solved efficiently and with a good precision using other methods.

The method
Galerkin-truncation method consists in solving an altered version of a PDE, inside which the unknown
function has been processed by a low pass filter discarding harmonics beyond a so-called wave-number,
usually denoted KG or K. This process is made through the so-called Galerkin projector2 PKG

defined as

PKG
: u(x) =

∑
k∈Z

ûke
2iπkx 7−→ PKG

u(x) =
∑

|k|≤KG

ûke
2iπkx (1)

where (ûk)k∈Z are the exact Fourier coefficients of u, which is thus assumed to be 1-periodic. Note that the
Fourier transform is only applied in space, not in time. This means that the approximated solution which is
searched is not u but its truncated spectrum version.

1Coherent Vorticity Simulation
2Proving PKG

is a projector can be done using linearity and properties on products of the inverse Fourier transform, when
developing PKG

(
PKG

u(x)
)
to get PKG

(
PKG

u(x)
)
= PKG

u(x), point-wise with respect to x.
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Interests
Despite the non negligible drawback of introducing non-physical resonance phenomena in the approximation,
the Galerkin-truncation method is a well-used technique in thermodynamics. In fact, as it is explained in
[4], the Galerkin projector enables to create a link between a conservative microscopic behaviour and the
dissipative macroscopic level where energy can be lost in molecular motion. It acts as an energy sink for the
low wave-number harmonics that end up vanishing in high modes depending on the chosen KG, acting as a
molecular viscosity.

This article also points out that spectral methods are within the best when it comes to the numerical
integration of hydrodynamic equations, on the precision point of view. Spectral methods also benefit from
efficient algorithm for their numerical uses.

On the improvement of numerical methods to Burgers and Euler equations using dual trees 4/17
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2 Governing equations

Due to multiple issues during the realization of this project, only the inviscid Burger equation will be studied.
Some diffusion models have been used to add material to this report as results were not conclusive at first,
using the tools presented by the authors. Those additional models come from the part of the course done
with S. Meignen.

2.1 1D inviscid Burgers equation

Before diving into the numerical aspects, it seems interesting to make a brief presentation of the 1D Burgers
equation in its continuous and Galerkin-truncated formulations, and to develop a few interesting points about
these.

2.1.1 Continuous formulation

Let Ω be an open spatial domain Ω ⊂ R and a time domain [0,+∞[ ; denote ΩT = Ω× [0, T [ for T > 0 such
that (x, t) ∈ ΩT . Let u : ΩT → R be a velocity function. The 1D inviscid Burgers equation is formulated as

∂u

∂t
+

1

2

∂u2

∂x
= 0

u(x, 0) = u0(x).
(2)

Note that this equation is said to be inviscid as the viscous term ν ∂2u
∂x2 with ν > 0 could be added on the

right member to introduce dissipation. This equation can be used to model and study turbulence [5], traffic
flows [6] or even shocks [7]. Burgers equation (2) can be solved using the method of characteristics as shown
in appendix A.1, leading to the implicit formula for the solution

u(x, t) = u0(x− tu(x, t)) (3)

which can generate singularities, as shown in appendix A.2.

2.1.2 Galerkin-truncated formulation

The Galerkin-truncated version of Burgers equation is obtained by applying Galerkin projector to (2), both
on the main equation and on the initial condition. Denoting v the solution to this truncated version of the
Burgers equation, one can write that : 

∂v

∂t
+ PKG

(
1

2

∂v2

∂x

)
= 0

v(x, 0) = PKG
(u0(x)) .

(4)

As shown in [8], the main equation of this truncated version can be written under a system of non linear
ordinary differential equation using conventional rules on differentiation and Fourier series :

dv

dt
=

−ik

2
·

∑
k+p+q=0
|p|,|q|≤KG

v−pv−q

v(x, 0) = PKG
(u0(x)) .

(5)

where k corresponds to the modes appearing when performing differentiation on the Fourier transform.

2.1.3 Fourier collocation method

Burger equation can be solved using a spectral method known as Fourier collocation method which makes
use of a differential operator DN : ℓ2(R) → ℓ2(R) that can be defined as DN ((uk)k) = F−1 [i.(mk)kF [(uk)k]]
where F denotes the Fourier transform and (mk)k the sequence of Fourier modes corresponding to the Fourier
transform of the sequence (uk)k. According to [9], with such operator, Burger equation can be written as :

∂u

∂t
+

1

3
DN (u2) +

1

3
uDN (u) = 0. (6)

On the improvement of numerical methods to Burgers and Euler equations using dual trees 5/17
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2.2 Diffusion models

The issue authors try to tackle is a denoising problem on a signal. Some well known techniques are used in
image processing, such as diffusion models, based on the heat equation. Here some of them are presented,
that will be used later on.

2.2.1 Heat equation

One knows that the heat equation constitutes a good toy model for denoising signals as it has a tendency to
smooth sharp gradient locations. The model for a signal u is expressed as

∂u

∂t
= c∆u (7)

where c > 0 and ∆ the spatial differential operator (corresponding to ∂2

∂x2 in 1D case). Some initial conditions
have to be added, which are given by the shape of the signal profile to filter at each time step. Boundary
conditions will be periodic as we look for such property on the Burger equation solution to filter. It lasts to
decide the time period to use ; this will be decided experimentally3. To apply this model, an explicit finite
difference scheme will be used as :

un+1
j − un

j

∆t
=

c

∆x2

(
un
j+1 − 2un

j + un
j−1

)
(8)

on the same grid that is used to discretize burgers equation. The only difference is that the time step will be

changed to match the CFL condition ∆t ≤ ∆x2

2 such that ∆t = 1
2∆x2.

2.2.2 Perona-Malik model

The Perona-Malik model tries to avoid smoothing regions where sharp gradient occur, which could be inter-
esting for Burger equation with shocks. It is defined as

∂u

∂t
= c div [g(∥∇u∥)∇u] (9)

where g : s ∈ R 7→ 1

1 + s2

λ2

. For large s, g(s) is small meaning the smoothing is reduced, and inversely, for

small s, g(s) is close to 1 so that the smoothing is stronger. Same initial conditions and boundary conditions
are used as for the heat equation model. The numerical scheme has to be changed to match this new term.
One can witness that for g ≡ 1, the heat equation model is retrieved. The scheme that is used is the one
proposed by Perona and Malik in 1990 [10], well explained by M. Wielgus [11], which is gn

j+ 1
2

= g(
un
j+1−un

j

∆x )

un+1
j −un

j

∆t = c
2∆x2

(
gn
j+ 1

2

(un
j+1 − un

j )− gn
j− 1

2

(un
j − un

j−1)
) (10)

for 1D case, with the addition of some celerity c > 0. This model can produce anti-diffusion if not well tuned.

2.2.3 Cote-Lions and Morel diffusion model

This model is really similar to the Perona-Malik one, with the difference that it convolves the gradient of the
signal with a Gaussian kernel Gσ in the function g. The model is thus expressed as :

∂u

∂t
= c div [g(∥∇u ⋆ Gσ∥)∇u] (11)

The scheme that is used is the same as in the case of the Perona-Malik one, with the addition of the
convolution with a custom Gaussian kernel. Same initial and boundary conditions as before will be used.
This model can also produce anti-diffusion if not well tuned.

3After some experiment, it has been decided to perform a single time step of this model to filter noise.
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3 NUMERICAL RESULTS Wavelet & differential calculus

3 Numerical results

3.1 The code

The code has been written all by myself from scratch. The file main.py contains the main time loop for
Burgers equation, using the simulation parameters stored in params.py. As two possibles ways of perform-
ing time integration were found during the writing of the code, a special file time_integration.py hosts
those methods (both Runge-Kutta of order 4, one using only explicit truncated Fourier transform, the other
using Fourier collocation method). The main time loop also contains the filtering step that makes use of the
methods located in filtering_methods.py.

Some post processing can be performed using the script post_processing.py, which avoids executing
the main loop each time one wants to plot data. Two additional scripts can be found : errors.py to manage
basic errors, and burger_1D_FV_solver.py which is the only code I did not write. It is a finite volume solver
for Riemann problems on Burgers equation4 that makes use of upwind interpolation and which is of second
order. This script will be used as the reference approximation to burgers equation5.

To reproduce results, the code can be parameterized at will with the params.py file. The command
python3 ./main.py can be entered in the console to execute the program.

3.2 Using no filtering

Doing a project about spectral without knowing anything on them at first, it seems important to check that
the Burger spectral solver works as expected, with no filtering. For this purpose, same parameters as in the
article are used for space and time discretization. It seems important to note that the writing of this part
of the code took a really large amount of time and effort. The following left plot was performed using only
Galerkin-truncation with Runge-Kutta 4, it does not contain Fourier collocation.

(a) Result of the code for spectral approximation of the
Burgers equation, K = 2048, using no filtering, at time
t ≈ 0.048.

(b) From [1] : solutions of the truncated inviscid Burgers
equation at time t = 0.48 with no filtering (green) and
CVS filtering (black) for K = 8192.

Figure 1: Comparison of the approximations to the truncated inviscid Burgers equation with no filtering, at
time 0.048

The same behaviour is obtained as the solver used in the article. Resonance appear at same locations,
but with a slightly smaller amplitude as the one from the article, on places where the signal is supposed to
be smooth. Nevertheless, this is a good thing to start investigating some filtering methods to discard those
resonances.

4https://zingale.github.io/comp_astro_tutorial/advection_euler/burgers/burgers-methods.html
5I tried using classical non linear solvers to approximate solutions to Burger equation, but it suffered from serious numerical

errors.

On the improvement of numerical methods to Burgers and Euler equations using dual trees 7/17
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3.3 CVS filtering with Kinglsets

From now on, only the method containing Fourier collocation and Galerkin truncation will be used inside
Runge-Kutta 4, to match article results. To make computations faster, we choose a space grid of N = 1024
points (meaning K = 341), and we keep other parameters as defined in the article. We use Near-Symmetric
13,19 tap filters for first level of the dual tree transform and Q-Shift 14,14 tap filters for the other levels, as
it is done in the code of the authors of the article. For the filtering part, a threshold is defined as follows :{

Tn+1 = qσ [ũn] ,

T0 = q
√

E
N

(12)

where q = 5 as defined in the article (this is a choice), E is the initial total energy of the signal, N is
the number of space points, σ [·] is the standard deviation of a vector of values and ũn is the vector of the
discarded coefficients at time n i.e. the ones below threshold Tn.

Figure 2: Result of my code for Burgers equation with kingslets filtering (left), result of article [1] using
CVS filtering with kinglsets - black (right).

The results do not seem as perfect as those presented in the article, but the overall behaviour is repro-
duced. In fact, the resonance is filtered on the entire signal, and some peaks can be observed, as well as for
the article results, on the locations where shocks occur.

This has been a time consuming part of the code to write, as at first, I tried writing the filtering algorithm
as presented in the article, but it was not working for weeks. The authors of the article accepted to send
their code, which helped me understanding that the spirit of the CVS method is not to apply a threshold,
but to actually choose ranges of scales within the dual tree decomposition and to assume their role with
respect to the macroscopic behaviour. For instance, signal’s variance is only estimated on some part of the
coarsest coefficients, and the scaling coefficients are always kept while filtering. It seems important to note
that the part of the code about this CVS filtering method is greatly inspired from the matlab code used by
the authors. It has then been adapted to the needs and my understanding, for this project.

On the improvement of numerical methods to Burgers and Euler equations using dual trees 8/17
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In their article, authors present the energy profile of the filtered approximation compared to the theoretic
one. Here is the comparison of the energy profile of the approximation done with my code, which is compared
to the finite volume approximation, known to be of a better accuracy and without noise issues.

Figure 3: Comparison of the energy profiles issued from my code (left) and the article (right)

Note that for this computation, the simulation runs for a numerical time tf = 0.2. We can see that a
very similar profile is obtained. Starting by a plateau, followed by a slight slopes and finally an acceleration
of the decrease around 0.175. It can be seen that my code seems to slightly overestimate the energy level as
the blue plot on the left is below the red one. In any case, it is quite remarkable to see that the CVS filtering
with dual trees manage to filter without perturbing the dynamics of the problem. Overall, this seems to
confirm that the code is working well and does filter the resonance properly.

3.4 CVS filtering with real-valued orthogonal wavelets

Authors then focus on the use of real-valued orthogonal wavelet in order to avoid using highly redundant
wavelets as Kinglsets. This is done at the cost of loosing the translation invariance needed for the filtering,
which they counteract with the introduction of a so called safety-zone. This zone tells the filter that neigh-
bouring wavelet coefficients to a coherent one should not be discarded. This helps introducing some stability
in the amplitude and scales of the wavelet coefficients. Unfortunately, I have not been able to reproduce this
safety zone in my code. This means that the following results have been produced using the same method
as before, even if the code is different as the wavelet transform does not generate a dual tree in this case.

Daubechies 12 The first try performed by the authors is with a Daubechies 12 basis. Note that the time
for the plots are changed to match those of the article.

Figure 4: Comparison of the approximations to the truncated inviscid Burgers equation with CVS
Daubechies 12 filtering, my code (left), article results (right-green) at time 0.067

On the improvement of numerical methods to Burgers and Euler equations using dual trees 9/17
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For the right plot, coming from the article, one should look at the green curve with is computed with real-
valued wavelet and no safety zone. It is strange to see that my code manage to filter the signal slightly better
in some sense at the author’s one, but some large oscillations can still be seen on the shock locations. This
result indeed shows that my implementation for the real-valued wavelet filtering does not work as expected.

Figure 5: Comparison of the energy profiles issued from my code using Daubechies 12 (left) and the article
(right)

One can see that even if the filtering is not as good as expected, the energy profile remains quite accurate
compared to the finite volume approximation, meaning there is no energy drift.

Symlets 12 The authors also test their filtering method on a Spline 6 wavelet basis, which the package
pywt does not contain and which I have not manage to add. Thus, I wanted to present a meaningful result
using an other type of orthogonal real wavelet. Symlets seem to be a good choice as they are an altered
version of Daubechies wavelet, to which some symmetry has been added. Thus, it could be interesting to
witness the effect of the loss of the asymmetry that worked quite nicely using the Daubechies 12.

Figure 6: Comparison of the approximations to the truncated inviscid Burgers equation with CVS Symlets
12 filtering, my code (left), article results (right-green) at time 0.067

In fact, we see that it does not work very well. it seems that the asymmetry that Daubechies 12 were
introducing helped in the stability of the filtering. Using Symlets 12, an energy drift can be observed right
from the start at numerical time t ≈ 5.10−3 with my code.

Here we clearly see that the profile of Burgers spectral approximation is almost following a line between
abscissa 0 and 0.3, but overestimating the profile. This may be due to the lack of shift invariance that is
introduced with the use of real-valued wavelet without the addition of the safety zone.

On the improvement of numerical methods to Burgers and Euler equations using dual trees 10/17
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3.5 Using wavelets (cf. Lab 2)

As it was frustrating to work on these Kingslets with no results for over two months, it has been decided at
some point to give a try to a method seen in the Wavelet course, which uses a similar threshold method, seen
in Lab 2. This threshold uses an estimator of the true noise variance6 σ̂ to have a threshold Tn = σ̂

√
2 logN

which is thus computed at each filtering step. The threshold is apply in a hard way.

Figure 7: Result of my code for Burgers equation with lab2-like filtering for K = 341 (left), result of the
article [1] using CVS filtering (black) for K = 8192 (right).

The filtering has been performed with Daubechies basis 4. Results for moderate numerical time seem
fine as very few oscillating part can be seen in the signal. However, this method seems inefficient for larger
simulation time, as the signal becomes totally noisy and would not be usable in a serious framework. Thus,
it seems that this method does not perform well enough to be kept in mind. Some other possibilities could
be to investigate other wavelet basis or other ways to define the threshold value.

6The estimator is given by the median of the wavelet coefficients divided by the experimentally determined coefficient 0.6745.

On the improvement of numerical methods to Burgers and Euler equations using dual trees 11/17
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3.6 Using the heat equation diffusion model

As wavelet denoising was not a common method to use for me, I decided to give a try to more classical
methods for denoising, using PDEs. The diffusion models presented by S. Meignen in his differential calculus
course will be used. Let us first focus on the heat equation model, as it has been presented before.

Figure 8: Result of my code for Burgers equation with heat equation diffusion filtering for K = 341 (left),
result of the article [1] using CVS filtering (black) for K = 8192 (right).

As the reader might see, this method is quite incredible as almost no noise can be seen on the left plots
(some still appears around x = 0.2 for t ≈ 0.048). No side effect can be witnessed, shocks are perfectly
captured, and the time duration does not seem to be an issue with respect to the reliability of the results. It
is the best method that was used so far.

Without surprise, the energy profile matches the finite volume approximation very well, which seems to
emphasize on the good performance of this method.

The heat diffusion model has been tuned to produce good results on this application. The time step for
the heat diffusion is chosen such that dt/dx2 = 0.5, and the propagation speed of the model is set to c = 0.2.
Moreover, a single time step of the model is performed to smooth noise.

On the improvement of numerical methods to Burgers and Euler equations using dual trees 12/17
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3.7 Perona-Malik diffusion model

Recall that this model makes use of a special function inserted in the divergence to modulate the smoothing
effect when the gradient is sharp so that it conserves the global profile of the signal.

Figure 9: Result of my code for Burgers equation with Perona-Malik diffusion model for K = 341 (left),
result of the article [1] using CVS filtering (black) for K = 8192 (right).

It is possible to witness that the results are quite good with this approach. Some oscillations still can be
seen around the first shock at time t ≈ 0.048 but it does not seem to introduce instability as the profile at
time t ≈ 0.129 is almost identical to the finite volume approximation.

This derived heat equation model has some good performance but is not as efficient as the pure heat
equation model that has been used in the previous paragraph. It is important that the model has been tuned
to produce within the best results. As for the heat equation model, this one has a time step chosen such
that CFL is reached (dt/dx2 = 0.5), and the propagation speed is changed to c = 0.05. The coefficient for
modulation function g is set as λ = 1000, and 10 time steps of this diffusion model are performed to denoise
the signal. These parameters have been chosen to improve the result, but might not be optimal for this
application.

On the improvement of numerical methods to Burgers and Euler equations using dual trees 13/17
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3.8 Cote-Lions-Morel diffusion model

This model makes use of the same scheme as the Perona-Malik one, with the only difference that it convolves
the gradient of the signal with a Gaussian kernel before applying the modulation function.

Figure 10: Result of my code for Burgers equation with Cote-Lions-Morel diffusion model for K = 341
(left), result of the article [1] using CVS filtering (black) for K = 8192 (right).

We see that the results are extremely similar as the one obtained with Perona-Malik model. It seems to
have a great stability over time, and to match almost perfectly the finite volume approximation.

Even if the performance of this model are also quite good, it is not as good as what we managed to obtain
with the heat equation model. Again, it is important that the model has been tuned to produce within the
best results. As for the heat equation model, the time step is chosen such that dt/dx2 = 0.5), the propagation
speed is changed to c = 0.05, coefficient in modulation function g is set as λ = 1000, and 10 time steps of
this diffusion model are performed to denoise the signal. As before, these parameters have been chosen to
improve the result, but might not be optimal for this application.

On the improvement of numerical methods to Burgers and Euler equations using dual trees 14/17
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4 Conclusion

First, let us mention that this project has taken far more time than expected when choosing the article. As
I was not familiar with spectral method, nor dual tree transforms, it took me a serious amount of time to
get into the details and write the code.

On the critic of the article, it seems important to mention that the filtering algorithm as presented in
the article never worked for me i.e. the one with an explicit threshold that is passed from a time step to
the following. This can be due to my ignorance or mistakes, as I was not familiar with the methods used
in the article. Hopefully, the authors accepted to share their code, which helped a lot in the realization and
the understanding of this project. It is still slightly deceiving not to have been able to reproduce the results
without exterior help.

On the reproduction of the results, I focused on the 1D Burgers equation as it was complex enough to get
familiar with spectral methods for 1D problems. I have managed to reproduce the results in the case of the
CVS filtering with dual trees, even if it seems that the accuracy of the code is not as good as the authors’
one. For the real valued wavelets filtering, it is not a success as I could not make the safety zone work in
my code. But the extension of the study with diffusion models coming from S. Meignen course showed that
not only spectral methods can be used to filter approximations. In fact, the classical heat equation model
is the method that produced the better results of this project when coming to matching the finite volume
approximation.

Finally, this project has taken a tremendous amount of time for not a large amount of results, but
it brought me to studying spectral methods, which I knew nothing about before, have fun with Burgers
equation, which I already studied some years ago, and also to get in touch with researchers and speak about
their work. This was overall, a really nice experience, and I would like again to thank M. Farge and R. M.
Pereira for their collaboration.
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A Properties of Burgers equation

A.1 Exact solution

Recall the equation with initial condition to the Burgers problem is given by
∂u

∂t
+

1

2

∂u2

∂x
= 0

u(x, 0) = u0(x).
(13)

We consider the method of characteristics i.e. we are looking for lines along which the solution is constant.
It is important to recall that this method enables to find solutions for smooth initial condition. Let define
such a line in the space-time plane by [X(s), T (s)] for s a real number7. We define Z(s) = u[X(s), T (s)]
which represents the parametrized characteristic lines so that :

dZ

ds
= 0. ⇐⇒ ∂u

∂t

dT

ds
+

∂u

∂x

dX

ds
= 0.

To build again the initial equation, it is clear that we need to impose :

dT

ds
= 1,

T (t) = t,
dX

ds
= u(x, t),

X(t) = x.

=⇒

{
T (s) = s,

X(s) = (s− t)u(x, t) + x.
(14)

Condition for an evaluation at t of X and T come from the framework imposed by the method of character-
istics. Moreover, note that u∂u

∂x = 1
2
∂u
∂x , explaining the value we chose for the derivative of X.

Recall that the main assumption of the method of characteristics is that dZ
ds = 0, meaning that Z is a

constant function of the real value s. Notice that,{
Z(0) = u[X(0), T (0)] = u(x− tu(x, t), 0) = u0(x− tu(x, t)),

Z(t) = u[X(t), T (t)] = u(x, t).

Those two relations thus provide an implicit relation on the solution to Burgers equation :

u(x, t) = u0(x− tu(x, t)). (15)

Numerically, this expression can be exploited using non linear solvers such as the bisection algorithm, or
Newton’s and quasi-Newton methods for example.

A.2 Singularity formation time

Looking at the expression of X(s) in (14), one can notice that characteristics could intersect at some given
time t∗ which can easily be computed. For instance, consider two distinct characteristic lines that go though
points (x1, 0) and (x2, 0) respectively, in the space-time plane, and that intersect at time t∗ :

X1(0) = x1 − t∗u0(x1) and X2(0) = x2 − t∗u0(x2).

Setting these two quantities to be equal provides a set of values for t∗, on which we choose to pick the smallest
possible value as it will be the first time characteristics cross i.e. singularities occur.

t∗ = inf
x1,x2∈Ω

{
− x2 − x1

u0(x2)− u0(x1)

∣∣∣∣ x2 − x1

u0(x2)− u0(x1)
< 0

}
.

7we can assume the characteristics enable to reverse the displacement induced by burgers equation as no diffusion term is
present, thus no entropy is created. However, it is known that characteristics can cross, so this assumption is only valid before
the time at which characteristics do not merge (entropy creation thus information loss and irreversibility). Setting s ≥ 0 is thus
physically consistent and enables to let s be as big as possible, but does not permit as much reversibility.
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