Viscoelastic fluid modeling for biological tissues under large deformations

M. Renard¹ P. Saramito¹ H. Delanoë-Ayari² I. Cheddadi³ F. Graner⁴

¹ LJK - Univ. Grenoble Alpes

² iLM - Univ. Lyon 1

³ TIMC - Univ. Grenoble Alpes

⁴ MSC - Univ. Paris Cité

November 24th, 2025

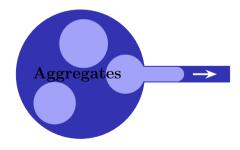
Outline

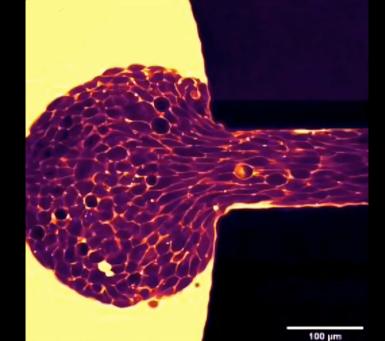
- Introduction
- 2 Experiments
- Mathematical model
- 4 Comparisons
- Conclusion

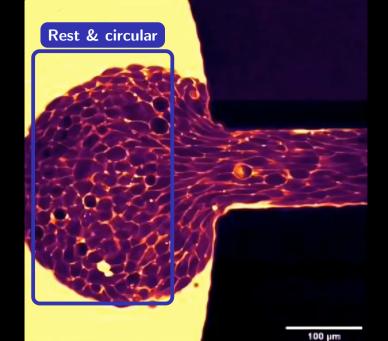
Introduction

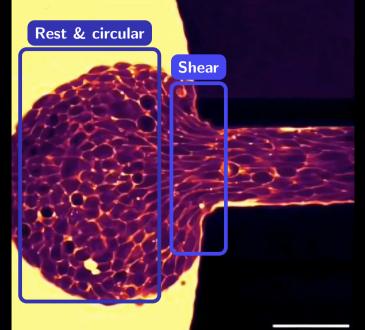
Embryonic tissues

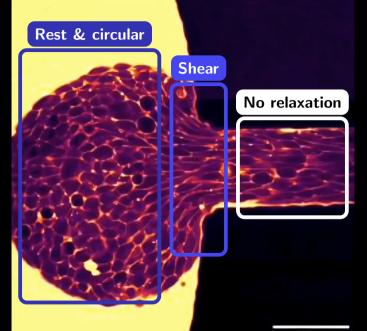
- Role: wound healing, morphogenesis, ...
- Active processes: division, growth, migration . . .
- Passive processes: stress, deformation → rheology

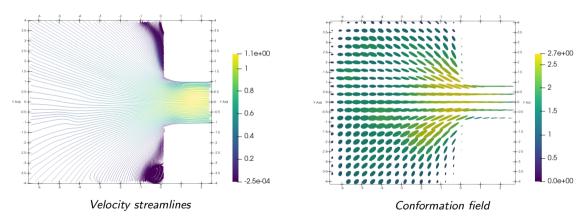

Introduction


Embryonic tissues


- Role: wound healing, morphogenesis, ...
- Active processes: division, growth, migration . . .
- Passive processes: stress, deformation \rightarrow rheology


Experiments [Tlili et al. 2022]


- Abrupt contraction
- Heterogeneous flow
- Large deformations



Experimental data fields

Processed from [Tlili et al. 2022]

Identify: Cell shape ←→ Ellipse Navier-Stokes is not enough!

Unknowns

 $\begin{array}{ccc} \mathsf{Pressure} & p & \\ \mathsf{Velocity} & \boldsymbol{u} & \\ \mathsf{Conformation} & \boldsymbol{c} & \end{array} \right\} \ \mathsf{Non\text{-}Newtonian}$

Unknowns

Parameters

Viscosity ratio	$\alpha \in [0,1]$
Weissenberg	$We \in \mathbb{R}_+$
Reynolds	$Re \in \mathbb{R}_+$

Unknowns

$$\begin{array}{ccc} \mathsf{Pressure} & p \\ \mathsf{Velocity} & \boldsymbol{u} \\ \mathsf{Conformation} & \boldsymbol{c} \end{array} \right\} \ \mathsf{Non-Newtonian}$$

Parameters

Viscosity ratio	$\alpha \in [0,1]$
Weissenberg	$We \in \mathbb{R}_+$
Reynolds	$Re \in \mathbb{R}_+$

Assumptions

- l. Isotropic rest state
- 2. Re $\ll 1$ (small velocity)
- **3.** Depth invariance \rightarrow 2D

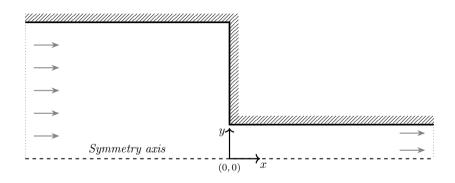
Unknowns

$$\begin{array}{ccc} \mathsf{Pressure} & p \\ \mathsf{Velocity} & \boldsymbol{u} \\ \mathsf{Conformation} & \boldsymbol{c} \end{array} \right\} \hspace{0.5cm} \mathsf{Non-Newtonian}$$

Parameters

Viscosity ratio	$\alpha \in [0,1]$
Weissenberg	$We \in \mathbb{R}_+$
Reynolds	$Re \in \mathbb{R}_+$

Assumptions


- . Isotropic rest state
- 2. Re $\ll 1$ (small velocity)
- 3. Depth invariance \rightarrow 2D

Features

- 1. Stationary solutions
- Slip boundaries
- Abrupt geometry

Geometry

Slip boundary conditions

Oldroyd-B model

Adapted from [Oldroyd 1950]

Find \boldsymbol{c} , \boldsymbol{u} and \boldsymbol{p} defined in Ω such that

$$\begin{cases}
\vec{c} = -\frac{1}{We}(c - \mathbb{I}) \\
-\text{div}(\sigma) = 0 \\
\text{div}(u) = 0 \\
\sigma = \frac{\alpha}{We}(c - \mathbb{I}) + 2(1 - \alpha)D(u) - p \cdot \mathbb{I}
\end{cases}$$

Oldroyd-B model

Adapted from [Oldroyd 1950]

Find \boldsymbol{c} , \boldsymbol{u} and \boldsymbol{p} defined in Ω such that

$$\begin{cases}
\vec{c} = -\frac{1}{We}(c - \mathbb{I}) \\
-\text{div}(\sigma) = 0 \\
\text{div}(u) = 0 \\
\sigma = \frac{\alpha}{We}(c - \mathbb{I}) + 2(1 - \alpha)D(u) - p \cdot \mathbb{I}
\end{cases}$$

Assets

- ullet Rest state: $oldsymbol{c} = \mathbb{I}$
- Linear, large deformations

Limits

- No global existence of solutions
- Unbounded extension with Tr(c)

FENE-P model

Adapted from [Bird et al. 1980]

Find \boldsymbol{c} , \boldsymbol{u} and \boldsymbol{p} defined in Ω such that

$$\begin{cases}
\vec{c} = -\frac{1}{\text{We}} \left(\frac{c}{1 - \beta \operatorname{Tr} c} - \frac{\mathbb{I}}{1 - \beta d} \right) \\
-\operatorname{div}(\sigma) = 0 \\
\operatorname{div}(u) = 0 \\
\sigma = \frac{\alpha}{\text{We}} \left(\frac{c}{1 - \beta \operatorname{Tr} c} - \frac{\mathbb{I}}{1 - \beta d} \right) + 2(1 - \alpha)D(u) - p \cdot \mathbb{I}
\end{cases}$$

FFNF-P model

Adapted from [Bird et al. 1980]

Find \boldsymbol{c} , \boldsymbol{u} and \boldsymbol{p} defined in Ω such that

$$extstyle extstyle ext$$

$$\begin{cases}
\mathbf{c} = -\frac{1}{\mathsf{We}} \left(\frac{\mathbf{c}}{1 - \beta \mathsf{Tr} \mathbf{c}} - \frac{\mathbb{I}}{1 - \beta d} \right) \\
-\mathsf{div}(\boldsymbol{\sigma}) = 0 \\
\mathsf{div}(\boldsymbol{u}) = 0 \\
\boldsymbol{\sigma} = \frac{\alpha}{\mathsf{We}} \left(\frac{\mathbf{c}}{1 - \beta \mathsf{Tr} \mathbf{c}} - \frac{\mathbb{I}}{1 - \beta d} \right) + 2(1 - \alpha)D(\boldsymbol{u}) - p \cdot \mathbb{I}
\end{cases}$$

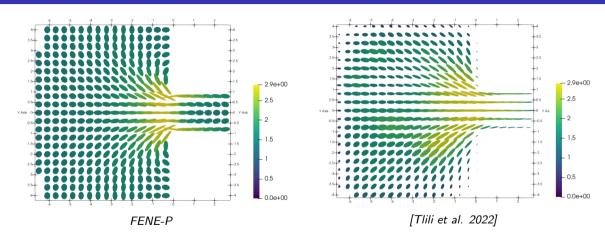
FENE-P model

Adapted from [Bird et al. 1980]

Find $\boldsymbol{c}, \boldsymbol{u}$ and p defined in Ω such that

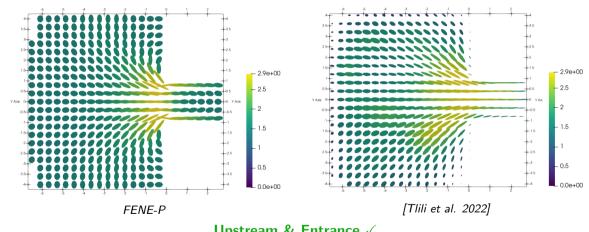
$$\begin{cases}
\mathbf{c} = -\frac{1}{\mathsf{We}} \left(\frac{\mathbf{c}}{1 - \beta \mathsf{Tr} \mathbf{c}} - \frac{\mathbb{I}}{1 - \beta d} \right) \\
-\mathsf{div}(\boldsymbol{\sigma}) = 0 \\
\mathsf{div}(\boldsymbol{u}) = 0 \\
\boldsymbol{\sigma} = \frac{\alpha}{\mathsf{We}} \left(\frac{\mathbf{c}}{1 - \beta \mathsf{Tr} \mathbf{c}} - \frac{\mathbb{I}}{1 - \beta d} \right) + 2(1 - \alpha)D(\boldsymbol{u}) - p \cdot \mathbb{I}
\end{cases}$$

Assets


- Bounded extension
- Large deformations

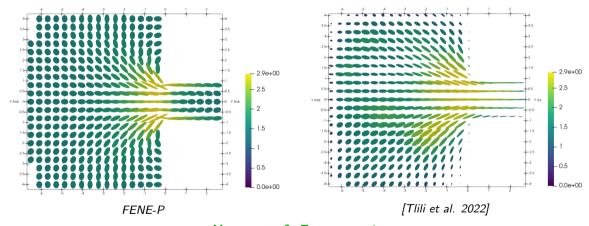
- Global (weak) existence [Masmoudi 2011]
- Contains Oldrovd-B ($\beta = 0$)

Extension bound

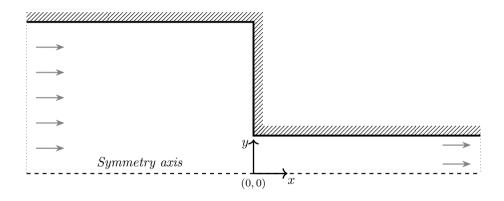

FENE-P vs. Experiments

Conformation maps

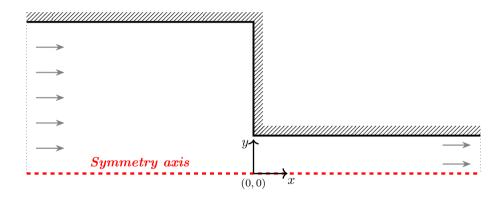
FENE-P vs. Experiments

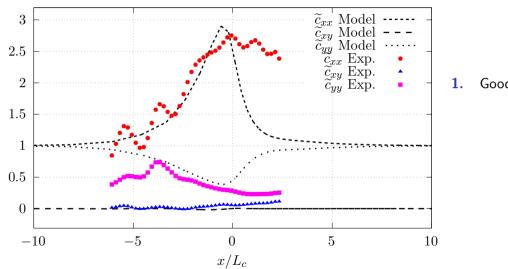

Conformation maps

Upstream & Entrance ✓

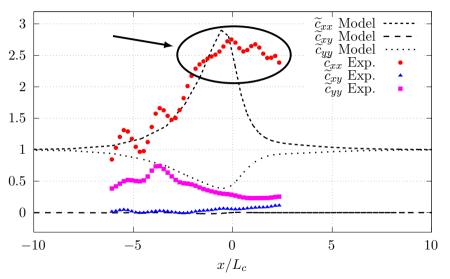

FENE-P vs. Experiments

Conformation maps

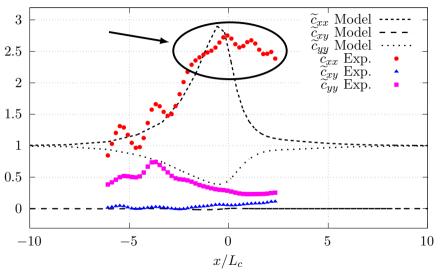


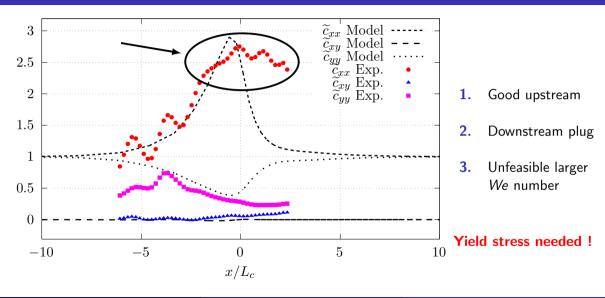

Upstream & Entrance √
Downstream relaxation not matching!

Symmetry axis



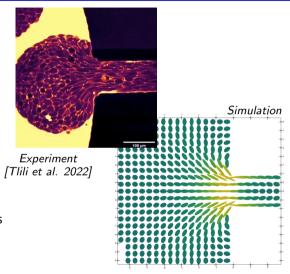
Symmetry axis




Good upstream

- 1. Good upstream
- Downstream plug

- 1. Good upstream
- Downstream plug
- 3. Unfeasible larger We number


Conclusion

Advances

- Embryonic tissues: viscoelastic behavior
- Oldroyd-B: unbounded extension
- FENE-P: upstream and entrance √
- Agreement for large deformation viscoelasticity

Perspectives

- New model with elasticity & yield stress
- Downstream channel study
- Mutants assessment

Thank you for listening!

maxime.renard@univ-grenoble-alpes.fr