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Linnea Hallin, Éloi Navet, Maxime Renard & Nicolas Roblet

Under the direction of
Brigitte Bidegaray-Fesquet & Clément Jourdana

School year 2023-2024

Article studied:
A friendly review of Absorbing Boundary Conditions and

perfectly matched layers for classical and relativistic

quantum waves equations.

Author: X. Antoine, E. Lorin, and Q. Tang
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1 INTRODUCTION Modeling Seminar

1 Introduction

1.1 Project context

This document was written as part of a modeling seminar organized by the MSIAM master’s program.
The aim is to carry out an initial research study in teams of 4. In order to carry out our research, we have
been provided with a research paper as a support [1]. The aim is to understand and retrieve the results
presented in this paper, and then to go deeper into the aspects that are of interest to us.

The project was produced by Linnea Hallin, Éloi Navet, Maxime Renard, and Nicolas Roblet under the
supervision of Ms. Brigitte Bidegaray-Fesquet1 and Mr. Clément Jourdana1.

1.2 Presentation of the studied article

In the realm of numerical simulations, solving Partial Differential Equations (PDEs) necessitates work-
ing within a closed and bounded spatial domain. Given that wave propagation is a physical phenomenon
extending beyond bounded domains, selecting appropriate boundary conditions becomes a pivotal concern.
The aim is to construct artificial boundary conditions that effectively mimic the exact solution throughout
the entire spatial domain.

In addressing this query, our primary resource will be the article [1], which delves into the topic of
Transparent Boundary Conditions (TBCs), more precisely Absorbing Boundary Conditions (ABCs) and
Perfectly Matched Layers (PMLs). On the one hand, ABCs consist in finding new equations, valid for
space boundary points, that avoid getting reflections of the waves; reflections that would have no physical
meaning as only due to the truncation of the domain for numerical simulation. This paradigm is presented
on wave, diffusion and Schrödinger equations, so will we do. On the other hand, PMLs consist in introducing
a specialized absorbing layer surrounding the computational domain. This layer is designed to dampen
outgoing waves, mitigating the reflection issues encountered in traditional simulations with finite boundaries.
The incorporation of complex-valued coefficients in the PML formulation allows for an effective absorption of
waves as they approach the boundary. Essentially, PMLs extend the simulation domain into this absorbing
layer, providing a solution to the challenges posed by unbounded wave propagation.

1.3 Overview of our study

The study is structured around a gradual progression of difficulty, consistent with the article [1] that
serves as study support. The following is an overview of what we have achieved.

We began by simulating the wave equation, integrating classical boundary conditions such as Dirichlet
and Neumann. Subsequently, we implemented the first TBCs introduced in the article, more precisely the
ABCs. With the aim of broadening our field of study, we undertook an analysis of the diffusion equation.
However, this exploration was only an intermediate step, as it was not the equation to which we devoted
most of our attention. Once this phase was completed, we turned our attention to the Schrödinger equation.
In a similar way, we started by implementing the classical boundary conditions, then added the ABCs. Once
this was complete, we implemented the PMLs for this equation. To increase the flexibility of the simulation,
we included the possibility of simulating the equation with a potential.

In parallel with the progress of the main study, we deliberately broadened our scope of investigation
beyond the elements strictly addressed in the article. This approach was intended to enrich our analysis and
explore subjects we value. Mainly, we preferred to take a rigorous look at the theoretical points addressed
in the numerical study. This is part of our commitment to completeness, leaving as few theoretical grey
areas as possible. With this in mind, we have chosen to focus on the theoretical aspects rather than rushing
into the implementation of other equations such as the Dirac equation, the Klein-Gordon equation, or the
two-dimensional Schrödinger equations. We prefer to understand the article’s innovations in depth, rather
than trying to implement them for various equations. However, this could prove to be a very interesting
study, but it is not the path we have decided to take in the course of our study. In other words, we decided to
carry out as complete a theoretical study as possible of all the important and innovative concepts discussed
in the article, as well as their digital implementation.

1Univ. Grenoble Alpes, Grenoble INP
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1 INTRODUCTION Modeling Seminar

Therefore, this report is divided into two parts. A first, the main one, presenting the equations, the
diagrams and their simulations and a second, the appendix, which contains the purely theoretical points
(and also the diffusion equation at the end).

1.4 Notations

When dealing with schemes, it is important to have clear notations. For this purpose, we will consider
a spatial uniform grid indexed by j ∈ [[0, J ]], meaning having J sub-intervals and J + 1 mesh points, and
a uniform time grid indexed by n ∈ {0, . . . , N}. The corresponding notation for the approximation of an
analytical solution ψ at space-time mesh points (j, n) will be ψnj . The space (resp. time) step will be denoted
∆x (resp. ∆t). All of our schemes will make use of finite differences (FD) and we take the convention that
for any j as defined before, and for any 0 ≤ m ≤ n, ψmj is known, thus our schemes aim at finding ψn+1

j .

On boundary conditions for numerical solutions of quantum wave equations 5/47



2 ONE-DIMENSIONAL WAVE EQUATION Modeling Seminar

2 One-dimensional Wave Equation

2.1 Equation Discretization Scheme

Consider the one-dimensional wave equation with a constant speed in free space, for different boundary
conditions. The governing equation is expressed as

∂ttψ − c2∂xxψ = 0, (1)

where ψ : Rx×]0, T ] → R represents the wave function and c is the wave velocity. It is crucial to note that,
for a well-posed problem, the wave equation demands an initial condition for both ψ and its first-order time
derivative.

To numerically solve this equation, a finite difference scheme is employed. Utilizing the Taylor-Lagrange
formula, a centered second-order approximation for the second derivative of a function u with respect to
space or time, given a small variation h, is obtained as follows:

u(2)(x) =
u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2).

Applying this continuous relation to the spatial and temporal mesh of the domain yields an approximation
of equation (1):

ψn+1
j − 2ψnj + ψn−1

j

∆t2
= c2

ψnj+1 − 2ψnj + ψnj−1

∆x2

⇒ ψn+1
j = 2ψnj − ψn−1

j + c2
∆t2

∆x2
(ψnj+1 − 2ψnj + ψnj−1). (2)

As demonstrated in appendix D.1, this scheme exhibits consistency of order 2 in both time and space and
adheres to the Courant–Friedrichs–Lewy (CFL) condition given by C := c∆t

∆x < 1. It is important to highlight
that no computation is required for time steps n = 0 and n = 1 since the initial value problem associated
with this equation requires the function and its derivative at time 0.

While this scheme is applicable within the interior of the spatial domain, i.e., j ∈ {1, . . . , J − 1}, specific
boundary conditions must be specified for j ∈ {0, J}. The forthcoming discussion delves into boundary
conditions and their implications.

Simulation parameters For all simulations in this section, the following set of parameters is adopted:
T = 0.5, #Tmesh = 1000, Ω = [−1, 2], #Xmesh = 500, and c = 6. The initial condition comprises a sum of
two Gaussians, illustrated in fig. 1. The first two time steps are initialized with the profile fig. 1.

Figure 1: ψ0 for the wave equation.
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2.2 Classic Boundary Conditions

Dirichlet Boundary Condition

The Dirichlet boundary condition involves specifying the values of the wave at the boundaries of the
computational domain. Mathematically, this is expressed as

∀n ≥ 0,

{
ψn+1
0 = α

ψn+1
J = β

with (α, β) ∈ R2.

Note it implies a compatibility relation for the time initialization, assuming ψ0 and ψ1 satisfy it. The
simulation results in behaviour akin to a wave propagating along a string attached at both ends, as illustrated
in fig. 2.

Figure 2: Simulation of (2) for Dirichlet boundary conditions with α = 0 and β = 0.

Periodic Boundary Condition

The periodic boundary condition treats the boundaries of the computational domain as if they wrap
around, creating a continuous, repeating space. This approach simulates an infinite and repetitive environ-
ment, where any object leaving the simulation through one boundary re-enters from the opposite boundary.
To implement this, the numerical scheme is applied at each side of the domain, specifically at the bound-
ary. The terms that do not exist on one side are replaced with the corresponding values from the opposite
boundary. This exchange facilitates communication between the two sides, effectively wrapping the space
around.

Figure 3: Simulation of (2) with periodic boundary conditions.
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2 ONE-DIMENSIONAL WAVE EQUATION Modeling Seminar

For this purpose, the scheme (2) is applied at points j = 0 and j = J , and then associated with j : −1 7→ J
(resp. j : J + 1 7→ 0) for the left (resp. right) boundary:

∀n ≥ 1,


ψn+1
0 = 2ψn0 − ψn−1

0 + c2
∆t2

∆x2
(ψn1 − 2ψn0 + ψnJ )

ψn+1
J = 2ψnJ − ψn−1

J + c2
∆t2

∆x2
(ψn0 − 2ψnJ + ψnJ−1)

The plot in fig. 3 illustrates the time evolution (ordinate) of a wave propagating in space (abscissa), showcasing
the expected behaviour of a wave in a wrapped space.

Neumann Boundary Condition

The Neumann boundary condition imposes a value on the normal derivative of the wave function, quan-
tifying the quality of the reflected wave. For homogeneous Neumann conditions, the border is perfectly
reflective as no portion of the wave penetrates the border.

Let α denote the desired value for ∂nψ on the left border and β its value on the right border. Since the
interior scheme is of order 2, the boundary scheme should also be of the same order to preserve the overall
accuracy: 

∂nψ|n+1
0 =

1

2∆x

(
3ψn+1

0 − 4ψn+1
1 + ψn+1

2

)
∂nψ|n+1

J =
1

2∆x

(
ψn+1
J−2 − 4ψn+1

J−1 + 3ψn+1
J

)
These decentered schemes lead to the following second-order explicit boundary schemes:

ψn+1
0 =

1

3

[
2α∆x+ 4ψn+1

1 − ψn+1
2

]
ψn+1
J =

1

3

[
2β∆x+ 4ψn+1

J−1 − ψ
n+1
J−2

]
The simulation effectively demonstrates how the boundary functions like a mirror in the case of homogeneous
Neumann conditions, resulting in a perfect reflection, as shown in fig. 4. Unlike Dirichlet boundary conditions,
no sign inversion occurs during the reflection of the wave.

Figure 4: Simulation of (2) with Neumann boundary conditions (α = 0 and β = 0).
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2.3 Adding a Source Term

For this part, a source term Q is introduced to the wave equation, with Q ≥ 0. Although Q could
theoretically be non-punctual, if it does not decay over time, the solution to the wave equation becomes
unbounded. The non-homogeneous wave equation is given by:

∂ttψ − c2∂xxψ = c2Q. (3)

To incorporate Q into the interior scheme (2), 2∆xQ is added to the right-hand side. Energy analysis on
this non-homogeneous version is performed in appendix C.1, and equation (67) provides the evolution of the
total energy E inside the domain as:

E(t) = E(0) +

c2
2

∫
Ω

Q(x, t)ψ(x, t)dx

 (t)−

c2
2

∫
Ω

Q(x, t)ψ(x, t)dx

 (t = 0). (4)

This expression is consistent, as when Q ≡ 0, total energy is preserved over time, while if Q > 0, energy
increases over time. In the following, we have equated physical energy with the L2 norm only in the hope of
seeing it increase. We can note that although we haven’t shown it, in previous simulations it was preserved.

Figure 5: Simulation of (3) with null initial conditions, using Neumann boundary condition (0, 0) and Q(x) =

e−100x2

.

For a constant source term over time, fig. 5 illustrates how energy accumulates in the domain. The
homogeneous Neumann boundary condition reflects all waves, thus energy, into the domain. Note that the
simulation was initialized without a wave.

2.4 Absorbing Boundary Condition

In this section, Absorbing Boundary Conditions are introduced to the wave equation, as proven in ap-
pendix A.1. This implementation aims to provide an understanding of their origin and serves as a foundation
for implementing them in the Schrödinger equation. The simulation considers the following system of equa-
tions: 

∂ttψ − c2∂xxψ = 0 in Ω× (0, T ),

ψ(·, 0) = ψ0, ∂tψ(·, 0) = ψt,0 on Ω,

∂nψ(x, t) +
1
c∂tψ(x, t) = 0 on ∂Ω× [0, T ].

The goal is to find a discrete approximation of ∂nψ + 1
c∂tψ = 0 while preserving second-order accuracy.

One can’t use the scheme (2) since this will make non-existing mesh point appear, which is not possible in this
case as this will impose another boundary condition. To solve this issue, the space derivative in the normal

On boundary conditions for numerical solutions of quantum wave equations 9/47
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derivative is approximated using a second-order forward scheme for the left boundary and a second-order
backward scheme for the right boundary:

∂nψ|n+1
0 =

1

2∆x

(
3ψn+1

0 − 4ψn+1
1 + ψn+1

2

)
∂nψ|n+1

J =
1

2∆x

(
ψn+1
J−2 − 4ψn+1

J−1 + 3ψn+1
J

)
For the time derivative, the usual second-order centered approximation used before is retained, as no

particular issue arises:

∂tψ|n+1
j =

ψn+1
j − ψn−1

j

2∆t
.

When combined with the normal derivative schemes, the two following explicit relations are obtained:
ψn+1
0 =

1

∆x+ 3c∆t

[
4c∆t.ψn+1

1 − c∆t.ψn+1
2 +∆x.ψn−1

0

]
ψn+1
J =

1

∆x+ 3c∆t

[
4c∆t.ψn+1

J−1 − c∆t.ψ
n+1
J−2 +∆x.ψn−1

J

] (5)

It is crucial to note that this Transparent Boundary Condition scheme relies on the knowledge of ψn+1

on the interior of the domain. In essence, this boundary condition necessitates applying the scheme on the
interior of the domain (2) first and then propagating the information to the boundary. Thus, it remains an
explicit scheme, even though the relations are written at time step n+ 1.

Figure 6: Simulation of (2) with Absorbing
Boundary Conditions.

Figure 7: Exact solution (54).

2.5 Study of the Complete Initial Value Problem

Now, let us investigate the initial value problem for the wave equation with a non-zero initial time
derivative: {

∂ttψ − c2∂xxψ = 0 in R× (0, T ),
ψ(·, 0) = ψ0, ∂tψ(·, 0) = ψt,0 on R.

(6)

As mentioned in the introduction for scheme (2), the initial wave and its derivative must be provided
at time n = 0 for the wave equation to be well-posed. To be precise, ψ0 and ψ0,t must be supplied for a
well-posed problem. Therefore, for the simulation, the following equation is implemented:

∀j ∈ [[0, J ]], ψ1
j = ψ0(xj) + ψt,0(xj)∆t

= ψ0
j + ψt,0(xj)∆t. (7)

Previously, one always considered that the initial time derivative was zero. To test this implementation, one
will focus on the case of a right-going wave only.

On boundary conditions for numerical solutions of quantum wave equations 10/47
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Right-Going Transport Only

To test the simulation model, we consider initial conditions such that the solution is composed of right-
going waves only, i.e.,

∀(x, t) ∈ R× (0,+∞), ψ(x, t) = ψ0(x− ct).

Starting with d’Alembert’s formula (54), we have:

∀(x, t) ∈ R× (0,+∞), ψ(x, t) =
1

2
[ψ0(x+ ct) + ψ0(x− ct)] +

1

2c

∫ x+ct

x−ct
ψt,0(y) dy

=
1

2
ψ0(x+ ct) +

1

2c

∫ x+ct

0

ψt,0(y) dy +
1

2
ψ0(x− ct) +

1

2c

∫ 0

x−ct
ψt,0(y) dy,

which is the analytical solution of the initial value problem. We want initial values such that

1

2
ψ0(x+ ct) +

1

2c

∫ x+ct

0

ψt,0(y) dy = 0.

Differentiating the above equation with respect to time, we get:

c

2
ψ′
0(x+ ct) +

1

2
ψt,0(x+ ct) = 0 ⇒ ψt,0(x) = −cψ′

0(x). (8)

Then,

∀(x, t) ∈ R× (0,+∞), ψ(x, t) =
1

2
ψ0(x− ct)−

1

2

∫ 0

x−ct
ψ′
0(y) dy

= ψ0(x− ct).

A simulation according to (7) and (8) is shown in fig. 8. This result aligns with the expected behavior of
the constructed solution. However, some residuals remain, so for a more detailed analysis we will examine
the error carried by the simulation.

Figure 8: Experiment with waves propagating exclusively to the right, consistent with (7) and (8).
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2.6 Study of the Error

In the following development, the focus is exclusively on the Transparent Boundary Condition, as it is
the primary concern of this article.

2.6.1 Error with Respect to the Exact Solution

Throughout the study, various error analyses are conducted. To eliminate the order of magnitude of the
simulated system, the following relative error (with respect to the exact solution) is considered:

∀t, er(t) =
max
x

(|ψsim(x, t)− ψex(x, t)|)

max
x,t′

(|ψex(x, t′)|)
. (9)

Necessarily, the exact solution needs to be implemented. In this case, as proven in appendix B.1, the exact
solution of the initial value problem (6) is the d’Alembert’s formula (54):

∀(x, t) ∈ R× (0,+∞), ψ(x, t) =
1

2
[ψ0(x+ ct) + ψ0(x− ct)] +

1

2c

∫ x+ct

x−ct
ψt,0(y) dy.

The main challenge in implementing this is calculating the integral. As it is necessary to compute #Tmesh ×
#Xmesh points, a fast method is used. Integrals are approximated using the composite trapezoidal rule. The
full development of the committed error can be found in section 2.4, leading to the result shown in fig. 9.

Figure 9: Exact error of the wave equation (1) simulation using ABCs.

The most important observation is that the order of magnitude of edge absorption is approximately 99%,
meaning that the relative error er is approximately 1%. Moreover, the error committed during the simulation
is of the same order of magnitude before and after the partial bounces at the edge of the simulation, at least
for our measure. Therefore, it is interesting to note that our boundary condition schemes do not generate
a significant error compared to our discretization of the wave equation. For a more detailed study of the
consequence of ABC, it might be interesting to reduce the order of the wave equation scheme.

Another way to overcome the error of our equation discretization scheme, to concentrate only on the
influence of the choice of our boundary conditions scheme, is presented in the following section.

2.6.2 Isolating Reflections

Given the known performance derived from the exact error analysis of ABCs for the wave equation, where
they remain unaffected by schematic errors, the process of reflection isolation may not have immediate rele-
vance. However, to exemplify the principle of isolating reflections, which proves essential for the Schrödinger
equation, we leverage the simplicity inherent in the wave equation.

The preceding analysis provided insights into the absorption performance. Nonetheless, as will be demon-
strated in the context of the Schrödinger equation, such a study can become intricate.
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Figure 10: Isolated reflections of the wave equation (1) using ABCs.

The concept of isolating reflections aims to liberate the analysis from the constraints of the exact solution,
focusing solely on the influence of the boundary condition on the computation. The procedure entails isolat-
ing the reflections observed in fig. 6 and quantifying their order of magnitude. For this purpose, the same
simulation will be run on a larger domain, providing a result ϕ. To isolate reflections, this larger domain is
defined by extending both sides of Ω by a segment of the same size as Ω, so that reflections do not have enough
time to get back to Ω. For example, if ψ is computed over [−1, 2] with 500 points in space, then ϕ is com-
puted on [−4, 5] with 3×500−2 = 1498 points in space. Then, reflections are isolated in the function ψ−ϕ|Ω.

To evaluate their orders of magnitude, the following measurement, analogous to the one considered in the
previous part, is used:

∀t, er,i(t) =
max
x∈Ω

(|ψ(x, t)− ϕ|Ω(x, t)|)

max
t′,x∈Ω

(|ψ(x, t′)|)
. (10)

The results are presented in fig. 10. One observes that the order of magnitude of the relative error committed
by the ABCs is around 1%, which is consistent with our previous results, since the errors considered have
the same semantics but for slightly ”different” objects.
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3 Schrödinger Equation

3.1 Equation Discretization Scheme

The subject of this part is the Schrödinger equation, as presented in [1] and expressed as:{
∂tψ

int − i∂xxψint = iVψint, (x, t) ∈ ΩT ,
ψint(x, 0) = ψ0(x), x ∈ Ω.

(11)

We will denote ψint as ψ for readability. V is a space-time-dependent potential, potentially non-linear de-
pending on ψ. We will denote V the part of the potential depending only on space and time, and f as the
non-linear part, i.e., V(x, t) = V (x, t)+f(ψ)(x, t). Boundary conditions must be provided for well-posedness.

Note that for this section we can draw an analogy with the previous calculations by choosing c=i , and
Crank-Nicolson scheme is used on (11), giving:

ψn+1
j − ψnj

∆t
=

c

2(∆x)2
[(
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

)
+
(
ψnj+1 − 2ψnj + ψnj−1

)]
+
c

2
V n+1
j

(
ψn+1
j + ψnj

)
. (12)

As shown in the appendix D.2, this scheme is consistent of order 1 in time, order 2 in space, with only
diffusion error, and it is unconditionally stable.As this is an implicit scheme, it can be solved using linear
algebra. The focus is on the inside of the domain Ω. Denote ψn+1 =

(
ψn+1
0 , . . . , ψn+1

J

)
as the vector to be

computed for each time step. Then the main equation of (11) can be expressed in terms of ψn+1 as:

An+1ψn+1 = Bn+1ψn + Sn+1, (13)

where the only unknown is ψn+1, and matrices A and B are defined as:

An+1 =



· · · ... · · ·

−C
2 1+C− ˜

V n+1
1 −C

2 0 ... ...
...

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
. . . 0

...
... ... 0 −C

2 1+C− ˜
V n+1
J−1 −C

2
· · · ... · · ·


Bn+1 =



· · · ... · · ·

C
2 1−C+

˜
V n+1
1

C
2 0 ... ...

...

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
. . . 0

...
... ... 0 C

2 1−C+
˜

V n+1
J−1

C
2

· · · ... · · ·


(14)

where C = c ∆t
(∆x)2 is the Courant–Friedrichs–Lewy (CFL) number, and Ṽ nj = i

2V
n
j . Sn+1 is defined as

a column vector helpful to introduce boundary conditions such as Dirichlet. The first and last rows of the
matrices An+1 and Bn+1 are left empty to allow for the implementation of spatial boundary conditions. Now,
let us discuss the simulation parameters. For all the simulations in this section, we consider the following
parameters: T = 2, #Tmesh = 501, Ω = [−10, 10], #Xmesh = 501, and

∀x ∈ R, ψ0(x) = 2 sech(
√
2x)ei

15
2 x.

These values are not exactly the same as in the article [1]. For the purpose of result comparison, this
difference is of little importance since they do not present an error study. These values are chosen to maintain
a reasonable complexity and to have an interesting error study. Note that for each simulation, the temporal
evolution of its L2 energy is added. The aim is to check that the simulation preserves the conservation
property and to roughly evaluate the energy loss during the encounter between the wave and the boundary.
The conservation of the L2 norm for the Schrödinger equation is shown in appendix C.2.

3.2 Classic Boundary Conditions

Dirichlet Boundary Conditions

For the homogeneous Dirichlet boundary condition, we prescribe the values of the unknown function on
the boundary, denoted as α on the left side and β on the right side:

∀n ≥ 0,

{
ψn+1
0 = α,

ψn+1
r = β,

with (α, β) ∈ R2.
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Figure 11: Simulation of (11) for homogeneous Dirichlet boundary condition.

This leads to An+1
0,0 = An+1

J,J = 1 and 0 on the other coefficients of the first and last lines. For Bn+1, the

first and last lines are null. Finally, Sn+1
0,0 = α and Sn+1

J,J = β. We observe that the conservation of the energy
and the non-dispersion of the boundary conditions aligns with expectations.

Neumann Boundary Conditions

Recall that Neumann condition describes the reflective property of the boundary, i.e., how much of the
wave can go through it. It also induces a compatibility relation with the initialization of the wave. In fact, if
the initial profile of the wave does not satisfy the boundary condition, some relaxation could occur. For the
homogeneous Neumann boundary condition, which describes the reflective property of the boundary, we use
second-order decentered schemes for the normal derivatives:{

∂nψ|n0 = 1
2∆x (3ψ

n
0 − 4ψn1 + ψn2 ) = α

∂nψ|nJ = 1
2∆x

(
ψnJ−2 − 4ψnJ−1 + 3ψnJ

)
= β.

(15)

Completing the corresponding coefficients in the matrices is then simple:
An+1

0,· =
1

2∆x
(3,−4, 1, 0 . . . , 0)

An+1
J,· =

1

2∆x
(0, . . . , 0, 1,−4, 3)

and

{
Bn+1

0,· = (0, . . . , 0)

Bn+1
J,· = (0, . . . , 0)

and (Sn+1)T = (α, 0, . . . , 0, β) .

The results show a reflective boundary, with the wave touching it, unlike the case of homogeneous Dirichlet
condition. The conservation of our digital system is once again evident. Imposing that the normal derivative
has value α on the left side and β on the right side leads to very similar results as Dirichlet in the case of
homogeneous Neumann condition, i.e., a perfectly reflective boundary. The results are presented in fig. 12.

Figure 12: Simulation of (11) for homogeneous Neumann boundary condition.
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It is important to mention that the wave touches the boundary, which is not the case for homogeneous
Dirichlet conditions. Moreover, we are once again noting the conservation of our digital system.

3.3 Absorbing Boundary Condition

As discussed in the article [1] and proven in appendix A.2, the Transparent Boundary Condition for the
homogeneous Schrödinger equation, i.e. with V ≡ 0, is given by:

∂nψ
int + e−iπ/4∂

1/2
t ψint = 0, (x, t) ∈ ΣT . (16)

The spatial normal derivative on the boundaries at a given time n can be approximated by a second-order
scheme: {

∂nψ|n0 = 1
2∆x (3ψ

n
0 − 4ψn1 + ψn2 ) ,

∂nψ|nJ = 1
2∆x

(
ψnJ−2 − 4ψnJ−1 + 3ψnJ

)
.

(17)

For the Caputo derivative, the approximation used in the article is given by:

∂
1
2
t ψ(t

n) ≈
√

2

∆t

n∑
k=0

βkψ
n−k where βk = (−1)kαk, (18)

where the formula for αk was found in [2] and is given by

αk =

{
1 if k = 0 or 1,

γk + γk−1 else,
with γk =


1 if k = 0,

0 if k = 2p+ 1,∏p
j=1

2j−1
2j = 2p−1

2p γ2(p−1) if k = 2p.

(19)

A scheme for the Transparent Boundary Condition, which is of second order in space, can be derived

using (17) and (18). For readability, we denote g = e−i
π
4 ∆x

√
2
∆t .

• On the left:

1

2∆x

(
3ψn+1

0 − 4ψn+1
1 + ψn+1

2

)
+ e−i

π
4

√
2

∆t

n+1∑
k=0

βkψ
n+1−k
0 = 0

⇐⇒
(
3

2
+ gβ0

)
︸ ︷︷ ︸

=A0,0

ψn+1
0 + (−2)︸︷︷︸

=A0,1

ψn+1
1 +

1

2︸︷︷︸
=A0,2

ψn+1
2 = −gβ1︸ ︷︷ ︸

=B0,0

ψn0 +

(
−g

n+1∑
k=2

βkψ
n+1−k
0

)
︸ ︷︷ ︸

=S0

. (20)

• On the right :

1

2∆x

(
3ψn+1

J − 4ψn+1
J−1 + ψn+1

J−2

)
+ e−i

π
4

√
2

∆t

n+1∑
k=0

βkψ
n+1−k
0 = 0

⇐⇒
(
3

2
+ gβ0

)
︸ ︷︷ ︸

=AJ,J

ψn+1
J + (−2)︸︷︷︸

=AJ,J−1

ψn+1
J−1 +

1

2︸︷︷︸
=AJ,J−2

ψn+1
J−2 = −gβ1︸ ︷︷ ︸

=BJ,J

ψn0 +

(
−g

n+1∑
k=2

βkψ
n+1−k
J

)
︸ ︷︷ ︸

=SJ

. (21)

For numerical approximation, schemes (20) and (21) coefficients for matrices A and B and vector S can
be plugged into (14) to be able to use a linear solver for the transparent boundary Schrödinger problem. It is
important to note that both boundary schemes have been multiplied by ∆x to improve the condition number
of A and B. Without this trick, Cond(A) = 5532, whereas now we have Cond(A) = 5023. This is not a
major difference, but it is still significant for stable approximations. The implementation yields the results
shown in fig. 13.

Some small unwanted reflections are observed, potentially due to the Crank-Nicolson scheme or the non-
linearity used in the article. Additionally, the conservation of energy before meeting the boundary and
significant dissipation at the boundary are evident. However, there are propagating residues, and a study in
section 3.6 is dedicated to them.
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Figure 13: Simulation of (11) with Absorbing Boundary Condition.

3.4 Adding a Potential

As the Schrödinger equation can include an additional term in the form of a potential, which is used in
the presentation of the results in the article, we chose to add this possibility to the code. We focused on
a potential that does not introduce non-linearity, i.e., V(x, t) = V (x, t), as it is already quite some work to
derive the corresponding schemes, even if the results of the article do include non-linear potential.

3.4.1 Continuous Framework

The corresponding Transparent Boundary Condition can be approximated using pseudodifferential oper-
ators theory and symbolical calculus, leading to, for example, a fourth-order version of the TBC presented
in [1]:

∂nψ + e−i
π
4 eiV∂

1/2
t

(
e−iVψ

)
+ isg(∂nV )

√
|∂nV |
2

eiV It

(√
|∂nV |
2

e−iVψ

)
= 0, (22)

where:

• ∂n denotes the normal derivative operator;

• sg is the sign function;

• ∂
1/2
t is the Caputo fractional derivative operator;

• V = ItV ;

• It =
t∫
0

, integral over time 0 to t operator.

Some remarks on the arguments of all those terms are useful, which is not explicit with formulation (22).

3.4.2 From Continuous to Discrete Expression

Potential-Linked Terms
The potential V is a function of space and time, and the normal derivative ∂nV also depends on space

and time, even if it can only be evaluated on the space boundary. The equality V = ItV could also be written
as V(x, t) = It(V (x, ·)) where · denotes that the variable is integrated. As V is given data, its integral over
time and normal derivatives can be computed before running any simulation. We will use the notation

Vnj := V(j∆x, n∆t) =
n∆t∫
0

V (j∆x, τ)dτ.
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Quadrature Formulas
The boundary formula contains two integrals, Caputo fractional derivative, and It, which means methods

to approximate these have to be chosen. For the Caputo fractional derivative we use the same one as for the
homogeneous Transparent Boundary Condition. However, for It, we chose to start with a trapezoid method
as it is easy to implement and of order 1, in contrast to rectangle methods that are of order 0. Recall that for
a segment [a, b] uniformly split into N intervals ([ak, ak+1])k∈{0,...,N} of length δx, and over which a function
h is defined, the approximation of the integral of h over this segment by the method of trapezoid is given by:

b∫
a

h(x)dx ≈
N∑
k=0

h(ak) + h(ak+1)

2
δx ≈ δx

2
(h0 + hN+1) + δx

N∑
k=1

hk.

Note that in the case of a sequence of approximations of h at each interval boundary point ak, we could
replace h(ak) by its approximation hk, which we will do when writing the scheme for (22).

3.4.3 The Boundary Scheme

Noting that for the normal derivatives, the same approximation formulas as provided in (17) are used
both for V and ψ, we get the following scheme on the left boundary:

1

2∆x

(
3ψn+1

0 − 4ψn+1
1 + ψn+1

2

)
+ e−i

π
4 eiV

n+1
0

√
2

∆t

n+1∑
k=0

(
βkψ

n+1−k
0 e−iV

n+1−k
0

)

+ isg(∂nV |n+1
0 )

√∣∣∣∂nV |n+1
0

∣∣∣
2

eiV
n+1
0

∆t2

√∣∣∣∂nV |00∣∣∣

2
e−iV

0
0ψ0

0 +

√∣∣∣∂nV |n+1
0

∣∣∣
2

e−iV
n+1
0 ψn+1

0



+ ∆t

n∑
k=1


√∣∣∣∂nV |k0∣∣∣

2
e−iV

k
0 ψk0


 = 0.

To get coefficients to inject into matrices An+1, Bn+1 and Sn+1, one can split factors in front of ψn+1
j ,

ψnj , and ψ
k
j for k ≤ n − 1, and multiply the equation by ∆x. We use again the notation g = e−i

π
4 ∆x

√
2
∆t

for readability purposes, leading to:3

2
+ geiV

n+1
0 β0e

−iVn+1
0 + i∆xsg(∂nV |n+1

0 )
∆t

2

∣∣∣∂nV |n+1
0

∣∣∣
4

2


︸ ︷︷ ︸
=A0,0

ψn+1
0 + (−2)︸︷︷︸

=A0,1

ψn+1
1 +

1

2︸︷︷︸
=A0,2

ψn+1
2

=

−geiVn+1
0 β1e

−iVn
0 − isg(∂nV |n+1

0 )

√∣∣∣∂nV |n+1
0

∣∣∣
2

eiV
n+1
0 ∆t∆x

√
|∂nV |n0 |
2

e−iV
n
0


︸ ︷︷ ︸

=B0,0

ψn0

+

−geiVn+1
0

n+1∑
k=2

(
βkψ

n+1−k
0 e−iV

n+1−k
0

)
− isg(∂nV |n+1

0 )

√∣∣∣∂nV |n+1
0

∣∣∣
2

eiV
n+1
0 ∆t∆x

n−1∑
k=1


√∣∣∣∂nV |k0∣∣∣

2
e−iV

k
0 ψk0



−isg(∂nV |n+1
0 )

√∣∣∣∂nV |n+1
0

∣∣∣
2

eiV
n+1
0

∆t∆x

2

√∣∣∣∂nV |00∣∣∣
2

e−iV
0
0ψ0

0


︸ ︷︷ ︸

=S0

.
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The formula is quite extensive; the reader will notice the right boundary scheme can be easily found using
the following transformation of the indices, thanks to the symmetry of the 1D domain:

j : 0 7−→ J,

1 7−→ J − 1,

2 7−→ J − 2.

A First Example of a Potential, No Boundary Interaction
Before showing the result obtained, we present an example with a strong attractive potential V(x, t) =

V (x, t) = −2|x|2 placed at x = 0 so that the wave does not touch the boundary. This test is performed to
check that the implementation of the potential is done correctly in the code.

Figure 14: Simulation of (11) for Transparent Boundary Condition with T = 2, 501 time points,
Ω = [−10, 10], and 501 space points, strong potential.

It is possible to observe that the wave is indeed attracted by the potential, and its energy seems to remain
stable, oscillating below its initial level. This behavior seems appropriate for the test case used here.

Repulsive Potential, Boundary Interaction
We now introduce a light repulsive potential with V(x, t) ≡ V (x, t) = 0.1|x|2 and let the wave impact the

boundary. Below are two figures: the first one produced by a simulation using TBC for the homogeneous
Schrödinger equation, which is inappropriate for this case, and the second one using the TBC designed in
this subsection, which accounts for a non-zero potential.

Figure 15: Simulation of (11) for Absorbing Boundary Condition for homogeneous Schrödinger equation,
light repulsive potential.

There is no major difference as reflections can be observed in both cases. However, in the case of the TBC
accounting for potential, the reflection is weaker than in the homogeneous TBC, which is quite positive.
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Figure 16: Simulation of (11) for Absorbing Boundary Condition accounting for potential, light repulsive
potential.

3.5 Perfectly Matched Layers

The idea behind perfectly matched layers (PML) is to introduce an absorbing nonphysical layer ΩPML :=
[−L∗, L∗] \ Ω which surrounds the physical domain Ω = [−L,L], with L∗ = L + δ. To make this layer
absorbing, we introduce a function Z which is constantly 1 in Ω and which dampens the waves in the outer
layers ΩPML,

Z(x) =

{
1 if |x| ≤ L,
1 + eivxσx(|x| − L∗) if L < |x| ≤ L∗,

(23)

where vx is a constant and σx is the so-called absorbing function. By recommendation from [1], one sets
vx = π

4 and σx = σ0(x + δ)2, where σ0 is a constant controlling how aggressive the dampening is. This,
together with the fact that δ = L∗ − L, gives us

Z(x) =

{
1 if |x| ≤ L,
1 + e

iπ
4 σ0(|x| − L)2 if L < |x| ≤ L∗.

(24)

Note that Z is continuous, specifically lim|x|↓L Z(x) = 1.
To simplify the problem, we study PML for the Schrödinger equation with a zero potential (V ≡ 0).

Inserting this into eq. (11), our equation of interest is then{
∂tψ

int − i
2
∂x
Z(x)

(
∂x
Z(x)

)
ψint = 0 (x, t) ∈ ΩT ,

ψint(x, 0) = ψ0(x) x ∈ Ω.
(25)

To derive the corresponding Crank-Nicolson scheme, we simply divide by Z(x)2 on the right-hand side and
gain the scheme

ψn+1
j − ψnj

∆t
=

c

4(∆x)2Z(x)2
[(
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

)
+
(
ψnj+1 − 2ψnj + ψnj1

)]
. (26)

In matrix form, this is expressed the same as in eqs. (13) and (14), but with a change in the constant C.
Instead of C = c ∆t

(∆x)2 , one sets C = c ∆t
Z(x)2(∆x)2 . Of course, this can be simplified, as 1

Z(x)2 ≡ 1 for x ∈ Ω,

and thus for computational purposes the 1
Z(x)2 is only relevant to the cases where |x| > L. We start with

simple Dirichlet boundary conditions, as the distinction between Dirichlet and Neumann conditions is not
highly significant due to the dampening effect of Z. However, later, the results will be examined by applying
ABC to the PML scheme.

The primary challenge in this context is to maintain a constant number of spatial discretization points,
even as the simulation area expands. The objective is to operate with constant computational complexity.
This means that the larger ΩPML is, the less accurate the scheme in Ω will be, since more spatial discretization
points are needed for the outer layer – which is not a part of our physical domain of interest.
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Figure 17: Simulation of (11) employing PML, with [−15, 15] as the entire spatial simulation domain and
[−10, 10] as the region of interest.

Similar to the Absorbing Boundary Conditions (ABCs), the obtained results align with expectations,
demonstrating a pronounced dissipation of energy at the boundary rather than within the domain, as seen
in fig. 17. Further investigation into the method’s accuracy is outlined in section 3.6. The results of the
PML scheme is of course dependent on the choice of σ0, where the optimal σ0 depends on the function, the
physical domain Ω and the size of the layer ΩPML. A proper study of the optimal σ0 is not done in this
report, but if one wants to optimize the parameter, one could either aim to minimize the condition number
for A or to minimize the error of the isolated reflections as seen in section 3.6.

3.6 Study of the Error

In this section, all simulation parameters are arbitrarily chosen. However, modifying them affects the
results but not the presented trends. The focus is solely on the evolution of the system’s results. For each
TBC method discussed, an investigation is conducted analogous to the wave equation, examining the exact
error and the isolated reflection to analyze boundary effects with the considered TBCs. The presentation of
the material necessary to study the exact error is initiated. As demonstrated in appendix B.2.4, the exact
solution to the homogeneous Schrödinger equation with the initial condition from the article [1], i.e.,

∀x ∈ R, ψ0(x) = 2 sech(
√
2x)ei

15
2 x,

which can be expressed as

∀t ≥ 0,∀x ∈ R, ψ(x, t) = e−i
π
4

1√
4πt

(
2 sech(

√
2z)ei

15
2 z ∗ G−i/4t(z)

)
(x),

where Ga := exp(a|| · ||2) is the Gaussian kernel.

To implement this theoretical result, it is necessary to approximate the convolution. A Riemann formula
is employed for this purpose to approximate the integral. The interval and the number of points for the
approximation convolution computation are now also simulation parameters. However, once these values
become large enough, they no longer have any influence. This is why further discussion on this matter will
be omitted. The plot in fig. 18 illustrates the solution to our problem under the same parameters as before.
Note that the exact solution resembles the results obtained during previous simulations. Regarding the exact
error, the error measurement er is considered, as defined in (9).

Let’s take a closer look at the reflection isolation method in the case of the wave equations. We are inter-
ested in focusing on reflections by separating them out for a detailed examination. Instead of only studying
them by themselves, we want to compare their amplitude with respect to the original wave. This way, we
can make sure they’re not adding too much extra noise to our simulation. This careful look at reflections
not only helps us understand them better but also makes sure our simulations are more accurate by keeping
unwanted disruptions to a minimum. It enables to fine-tune the understanding of boundary effect for ABCs.
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Figure 18: Exact solution of (11).

For this purpose, ψ is computed as before on Ω. The same simulation is then run on an extended version of
the domain, with an additional segment of the size of Ω on each side to avoid reflection, giving ϕ. Reflections
are then isolated, taking into account ∥ψ − ϕ∥Ω. For instance, if ψ is computed on [−10, 10] with 501 space
points, then ϕ would be computed on [−30, 30] with 501× 3− 2 = 1501 space points. As a measure for this
analysis, a new time er,i is defined as (10).

3.6.1 ABC

In this section, we investigate the influence of ABCs alone, studying the error and undesired reflections
as shown in fig. 13.

Exact Error
The exact error observed when applying ABCs is illustrated in fig. 19.

Figure 19: Exact error of (11) using ABCs.

An increasing error is observed in the simulation before reaching the boundary. This is attributed to
a growing phase shift of the simulation concerning the exact solution. The manifestation of this is evident
when examining the difference of norms, which is significantly smaller. While studying this phase shift is
interesting, the primary objective is the investigation of boundary effects.

The method, in its current form, does not yield conclusive information about the effect of the edges,
prompting the introduction of reflection isolation analysis initially. Nonetheless, it serves as a reference
measure for the error committed by the discretization scheme of the equation with 501 discretization points
in our physical zone of interest.
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Isolating Reflections
Focusing on isolated reflections, as defined previously, we obtain the following figure, fig. 20.

Figure 20: Isolated reflections of (11) using ABCs.

From this result, we can deduce that the error incurred by ABCs for the Schrödinger equation is similar
to that for the wave equation. The amplitude of the reflections obtained with the use of the Transparent
Boundary Condition is observed to be 100 times smaller than the original amplitude of the wave.

3.6.2 PML

We now examine the error made by the system applying PML, using Dirichlet boundary conditions and
not ABCs. The objective is to evaluate the order of magnitude of the reflection on fig. 17.

Exact Error
The error made by the scheme is again of a higher order than the residues induced by the boundary

conditions about reflections, here PMLs. This exact error, with the same parameters as when presenting the
PMLs in fig. 17, is depicted in fig. 21.

Figure 21: Exact error of (11) using PMLs with [−15, 15] as the full space simulation domain and [−10, 10]
as the space of interest.

The cost of using PML manifests as a reduction in the number of space discretization points in the domain
of interest, directly impacting the error. In fig. 21, considering an absorbing layer of width 5 on each side
for a domain of interest of [−10, 10], the size of the absorbing layers represents half of the total size. In this
instance, this leaves 250 points for the domain of interest, which is half the discretization space of 501 points.
This nearly multiplies the error er by two before reaching the edge of the domain of interest. However, the
reflections seem to have a much less significant impact compared to ABCs. Thus, when using PML with
fixed complexity, a trade-off arises between precision before and after reaching the inner edge. The parameter
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associated with this dilemma is the width δ of the absorbing layers. With this adjustment, the damped layer
is reduced to [−10, 13], and the result is shown in fig. 22. With this, there is no additional hidden simulation
on the left side and less on the right side. Note that this demands knowledge of the direction of propagation
of the wave, which in this case is to the right.

Figure 22: Exact error of (11) using PMLs with [−10, 13] as the full space simulation domain and [−10, 10]
as the space of interest.

As expected, precision is regained in the primary simulation, with er at 0.40, which is much closer to what
was found in the ABCs part. This adjustment also has an obvious impact on reflections. Nevertheless, the
deliberate choice was made to keep the damped layer size small to emphasize the combination of ABCs and
PMLs. However, the PML results alone are very satisfactory with a full domain size of [−10, 14], yielding
a maximum er at 0.42. Finally, as will be discussed in section 3.6.3, adding ABCs to PMLs improves the
trade-off between the accuracy of the main equation simulation and that of the bounce.

Isolating Reflections
Isolating the reflections for the PML solution provides us with the results in fig. 23. From this, it can be

Figure 23: Isolated reflections of (11) using PMLs with [−10, 13] as the full space simulation domain and
[−10, 10] as the space of interest.

inferred that the error incurred by PMLs in solving the Schrödinger equation is significantly lower compared
to that for ABCs, decreasing from 1% to 0.5%. However, as explained previously, this excellent improvement
in the reflections error is to the detriment of the precision of wave propagation. It could be interesting to
evaluate the evolution of the error as a function of the thickness of the damping layers, though this study
requires considerable computation time for typical computers.

On boundary conditions for numerical solutions of quantum wave equations 24/47
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3.6.3 ABC & PML

Paradigm
An idea to enhance the performance of the previously discussed trade-off is to reduce the width of

absorbing layers and then add an ABC scheme to the outer edges of the simulation. This approach allows
absorption of the wave on the outer edge but enables 99% of the latter to be absorbed. In other words, ABCs
may be complementary to PMLs.

Overall simulation zone
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Figure 24: ABC & PML merged schemes.

The idea of the process is summarized in fig. 24. This aims to reduce the amount of energy across the
PML zone so that the ABC conditions would lead to better absorption of the energy left. There is a trade-off
between simulation complexity and precision of the simulation.

Exact Error
The exact error when considering the simultaneous use of ABCs and PMLs is illustrated in fig. 25.

Figure 25: Exact error of (11) using ABCs and PMLs with [−10, 13] as the full space simulation domain
and [−10, 10] as the space of interest.

As expected, a result extremely close to fig. 22 is obtained, with the difference that there seems to be less
reflection. The error produced by the main scheme (before reaching the boundary) did not change, given
that the number of discretization points in the space of interest did not change. Nelow we will conduct a
study of the isolated reflections to obtain their orders of magnitude and measure the gain of ABCs added to
PMLs.
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Isolating Reflections
The result of isolating the reflections obtained by merging ABCs and PMLs is shown in fig. 26. It is

very encouraging; adding ABCs to our previous PMLs scheme has an effect on reflection. The relative error
goes from 1% for ABCs, to 0.5% for PMLs and finally 0.01% for ABCs and PMLs together, overall dividing
the relative error by 100 by adding PMLs to ABCs and therefore by 10000 overall compared to the system
without TBCs.

Figure 26: Isolated reflections of (11) using ABCs and PMLs with [−10, 13] as the full space simulation
domain and [−10, 10] as the space of interest.

However, as explained, this has the effect of decreasing the accuracy of the main simulation of the equation.
The key is to find a balance to meet the needs of the simulation. It would be interesting to conduct a more
in-depth study on this dilemma. This study could prove to be very important when working, as has been
done, with fixed complexity. In the case of very large simulations, it is essential to evaluate the addition of
complexity induced by PMLs for a fixed accuracy.

Remark Note that in all the simulations presented here, the space and time steps are considered relatively
high to highlight the effects of our TBCs, but the numerical results can be greatly improved by reducing
them!
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4 Conclusion

This study conducted a thorough exploration into solving the Schrödinger equation, with a specific focus
on the influence of different boundary conditions, particularly Absorbing Boundary Conditions (ABCs) and
Perfectly Matched Layers (PMLs). The primary goal was to understand the strengths and limitations of each
method and investigate potential synergies arising from the combination of ABCs and PMLs.

4.1 Key Contributions

We delved into the exact error in the numerical implementation of the Schrödinger equation. The exact
solution served as a benchmark, enabling a comprehensive evaluation of the performance of diverse boundary
conditions. In addition, a method for isolating reflections, related to the exploration of wave equations, has
been introduced. This facilitated the examination of the real amplitude and shape of reflections, offering
valuable insights into their impact on the simulation.

A systematic analysis of the impact of ABCs and PMLs individually revealed that ABCs introduced a
growing phase shift, and isolated reflections were significantly reduced in amplitude. PMLs exhibited lower
errors compared to ABCs but introduced a trade-off between simulation accuracy before and after reaching
the inner edge. To address this trade-off, a novel approach combining ABCs with PMLs was proposed.
This hybrid approach has produced promising results, reducing reflections and improving overall accuracy,
although it does lead to a moderate increase in computational complexity.

4.2 Achievements

The study demonstrated that the error introduced by PMLs was notably lower than that by ABCs.
Moreover, the combination of ABCs and PMLs exhibited a substantial reduction in relative error, suggesting
a potential solution to the accuracy-complexity trade-off.

4.3 Limitations

The study focused on specific parameters, and variations in simulation parameters could influence the
observed results. Additionally, the trade-off between accuracy and computational complexity requires further
exploration, especially in the context of larger simulations.

On one hand, the ABCs conditions can’t be applied every time, especially when the potential has some
non-linearity. For academic cases, this is fine, which is not necessarily the case for real-life applications.
However, it produces very good results. On the other hand, the PML condition does not imply knowing the
form of the wave. It introduces a damping layer to annihilate reflection without changing the scheme. Hence
it can be done systematically. But it comes with a higher computational cost. That’s why we saw the hybrid
approach, which can be applied only if the Absorbing Boundary Conditions can be derived from the scheme.

4.4 Future Directions

Future work could involve a comprehensive study on the sensitivity of results to variations in simulation
parameters. Investigating the impact of different widths of absorbing layers in PMLs on error and reflection
reduction is another avenue for exploration. Furthermore, adaptive strategies for dynamically adjusting the
width of absorbing layers based on evolving wave dynamics could be explored. Extending the analysis to more
complex scenarios and larger simulations would also be valuable to assess scalability and generalizability.

With the same theory, one could write the equations in two dimensions. The process would be the same.
One could expect similar results than the one presented in our work. This has been done in [1].

In conclusion, this study contributes valuable insights into the performance of boundary conditions for
solving propagation equations, and especially the Schrödinger equation which was in the center of our study.
The proposed combination of ABCs and PMLs presents opportunities for enhancing simulation accuracy in
the presence of complex boundary effects. Identified limitations and future work directions pave the way for
continued research in this domain.
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A Proof of Absorbing boundary conditions

A.1 ABCs for the wave equation

Let formulate the initial value problem associated to the wave equation,{
∂ttψ − c2∂xxψ = 0 in R× (0, T ),
ψ(·, 0) = ψ0, ∂tψ(·, 0) = ψt,0 on R.

(27)

It is proved in appendix B.1 that the solution of this problem takes the form of d’Alembert’s formula (54),

∀(x, t) ∈ R× (0,+∞), ψ(x, t) =
1

2
[ψ0(x+ ct) + ψ0(x− ct)] +

1

2c

∫ x+ct

x−ct
ψt,0(y) dy.

The aim now is to derive some ’far’ space conditions from this analytical solution, so as to make the simulation
more constrained with accurate boundary condition. We notice that we can therefore write

ψ(x, t) = ψl(x+ ct) + ψr(x− ct)
with

ψl(x) =
1

2

(
ψ0(x) +

∫ x

−∞
ψt,0(u) du

)
and ψr(x) =

1

2

(
ψ0(x)−

∫ +∞

x

ψt,0(u) du

)
.

In the following, we will assume that ψ0 and ψt,0 are compactly supported and bounded, note that if ψt,0
is in L1(R), so the quantities ψl and ψr are well defined on R. Let’s study the temporal behavior of the
solution ’far’ in space. For example, let’s move to the left of the x-axis, we introduce Rl = {x ∈ R / x <
inf (

⋃
supp(ψ0, ψt,0))} and observe that

∀x ∈ Rl, ψr(x) = 0.

The main property of this set is that for x ∈ Rl and all t > 0, we have x− ct ∈ Rl and then ψr(x− ct) = 0.
The time evolution of a point x on the left can be summarized as follows,

∀(x, t) ∈ Rl × (0, T ), ψ(x, t) = ψl(x+ ct). (28)

Noting that ∂xψ|x∈Rl (x, t) = [ψl]′(x+ ct), it comes

∀(x, t) ∈ Rl × (0, T ), ∂tψ(x, t)
(28)
= ∂tψ

l(x+ ct)

chain rule
= c[ψl]′(x+ ct)

= c∂xψ(x, t). (29)

On the same principle, we can do exactly the same thing on the right Rr = {x ∈ R / x > sup (
⋃

supp((ψ0, ψt,0))}
and deduce that

∀(x, t) ∈ Rr × (0, T ), ∂tψ(x, t) = −c∂xψ(x, t). (30)

Equations (29) and (30) can be unified for x ’far’ (more formally defined as Rr ∪ Rl) as

∂nψ +
1

c
∂tψ = 0, (31)

where n is the outwardly unit normal vector (i.e +1 for right and −1 for left) and then ∂n the normal
derivative. Since this equation a direct consequence of (27), we can add it to our equations system without
loss of generality:

(27) ⇐⇒

 ∂ttψ − c2∂xxψ = 0 in R× (0, T ),
ψ(·, 0) = ψ0, ∂tψ(·, 0) = ψt,0 on R,
∂nψ(x, t) +

1
c∂tψ(x, t) = 0 on Rr ∪ Rl × (0, T ).

Let’s get back to the problem of boundary space conditions during simulation. Let us therefore restrict the
problem on Ω× [0, T ], where Ω is a closed set of R, our problem becomes ∂ttψ − c2∂xxψ = 0 in Ω× (0, T ),

ψ(·, 0) = ψ0, ∂tψ(·, 0) = ψt,0 on Ω,
∂nψ(x, t) +

1
c∂tψ(x, t) = 0 on ∂Ω× [0, T ],

Note that the added equation intuitively allows us to dictate the boundary behaviour of the simulation so
that the function is not reflected or whatever. This is why equation (31) is named Absorbing Boundary
Condition (ABC) equation.
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A.2 ABCs for Schrödinger equation

We are going to prove the ABCs derived pages 6 and 7 in [1], introducing all needed hypothesis on the
concerned functions.

A.2.1 Notations and problem

The computational space domain is denoted Ω ⊂ R which is closed and bounded, which boundary is
denoted Σ. In the case of the 1D Schrödinger equation, the left and right complementary spaces are re-
spectively denoted Ωl := [−∞, xl] and Ωr := [xr,+∞[, with Ωl,r := Ωl ∪ Ωr such that Ω ∪ Ωℓ,r = C. With
these notations, Σ = {xl, xr} and we set ΣT = ∂Ω× [0, T ], T being the period of time on which we look for
solutions. The authors introduce the problem as a couple transmission problem as follows :

(
i∂t + ∂2x

)
ψint = 0, x ∈ Ω, t > 0 (32a)

∂xψ
int = ∂xψ

ext , x ∈ Σ, t > 0 (32b)

ψint (x, 0) = ψ0(x), x ∈ Ω (32c)

and 

(
i∂t + ∂2x

)
ψext = 0, x ∈ Ωℓ,r, t > 0 (33a)

ψext = ψint , x ∈ Σ, t > 0 (33b)

lim
|x|→∞

ψext(x, t) = 0, t > 0 (33c)

ψext (x, 0) = 0, x ∈ Ωℓ,r. (33d)

This formulation makes sense as one could see the problem as finding a compactly supported function
on Ω (32c), (33c), obeying Schrödinger equation on R (33a), (32a), C1 on spatial domain (32b), (33b), with
initial condition (33d) that could for instance have the shape

ψ(x, t) = ψint(x, t)1Ω(x, t) + ψext(x, t)1Ωℓ,r
(x, t)

with some initial condition (32c), (33d). That way, the boundary of computational domain is involved in the
computation, enabling to find new conditions on it.

A.2.2 Laplace transform on coupled transmission problem

Start by applying Laplace transform (LT) on equation (33a). Recall the Laplace transform of a function
f(t) ∈ L2(R+,C) is defined for ω ∈ C as:

f̂(w) := L [f ] (w) =
∞∫

t=0

f(t)e−ωt dt

It can be shown that this is a reversible operation on L2(R+,C), and the integral converges absolutely for
ℜ(ω) > inf {σ = ℜ(z), z ∈ C

∣∣ L [f ] (σ) converges absolutely}. In our case, we assume ψext(x, .) ∈ L2(R+,C)
since Laplace transform is reversible for such kind of functions. The Laplace transform of the function is thus
well defined, and we get absolute convergence of the LT as soon as ℜ(w) > 0 since ψext(x, .) ∈ L2(R+,C)
(using Cauchy-Schwarz inequality).

∫ ∞

t=0

(
i∂tψ

ext + ∂2xψ
ext
)
e−tω dt = i

∫ ∞

t=0

∂tψ
exte−tωdt+ ∂2x

∫ ∞

t=0

ψexte−ωt dt

IBP
= i

([
ψexte−tω

]∞
0

+

∫ ∞

t=0

ωψexte−tω dt

)
+ ∂2xψ̂

ext(x, ω)

= iωψ̂ext(x, ω) + ∂2xψ̂
ext(x, ω)

= 0.

Note that [ψexte−tω]
∞
0 = 0 because of (33d) and absolute convergence. We now are in possession of a

brand new ODE :
iωψ̂ext(x, ω) + ∂2xψ̂

ext(x, ω) = 0 (34)
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which admits a unique solution, for example, on Ωr, given by :

ψ̂ext(x, ω) = A+(ω)e
+√−iωx +A−(ω)e−

+√−iωx (35)

where ℜ( +
√
·) > 0 so that absolute convergence of the integral can be maintained, thus its well-definiteness.

For instance, apply Laplace transform on (33c) :

lim
|x|→∞

ψext(x, t) = 0

⇐⇒
∞∫

t=0

lim
|x|→∞

ψext(x, t)e−ωt dt = 0

=⇒ lim
|x|→∞

∞∫
t=0

ψext(x, t)e−ωt dt = 0, dominated convergence

⇐⇒ lim
xr→+∞

ψ̂ext(x, ω) = 0, by definition of Laplace transform, and −∞ < xr

=⇒ A+(ω) = 0.

From now on, we keep, for (x, ω) ∈ Ωr × C, ψ̂ext(x,w) = A−(ω)e−
+√−iwx.

A.2.3 Link solution to external problem with internal problem

We start by re-expressing the previously found solution to get rid of the coefficient A−(ω) :

ψ̂ext(x,w) = e−
+√−iw(x−xr)e−

+√−iwxrA−(ω) = e−
+√−iw(x−xr)ψ̂ext(xr, w) (36)

The expression can then be differentiated with respect to x so that

∂xψ̂
ext(x, ω) = − +

√
−iwψ̂ext(xr, ω)e

− +√−iw(x−xr) (37)

= − +
√
−iwψ̂int(xr, ω)e

− +
√
−iw(x−xr), using (33b) (38)

= ∂xψ̂
int(x, ω) (39)

where x ∈ Σ ∩ Ωr because of the last step we performed. Then ∂xψ̂
int(x, ω)

∣∣∣
x=xr

= − +
√
−iw

ψ̂int(xr,ω)|
x=xr√

w
.

We need to compute − +
√
−i. Using i = ei

π
2 leads to ℜ(

√
−i) = −

√
2
2 < 0, thus we use −i = e−i

π
2 leading to

ℜ(
√
−i) =

√
2
2 > 0 so that +

√
−i = e−i

π
4 . At this point, we have :

∂xψ̂
int(x, ω)

∣∣∣
x=xr

= −e−iπ4 w
ψ̂int(xr, ω)

∣∣∣
x=xr√

w
(40)

A.2.4 Get back to original transmission problem with inverse Laplace transform

As we are working on spaces where Laplace transform can be inverted, we apply it to the very last relation
we got on ∂xψ̂

int. As no explicit formula for such operation exists, we will use LT properties :

Prop. f(t) L [f ] (ω) = F (ω)

1 f ′(t) ωF (ω)− f(0)
2 (f ∗ g)(t) F (ω)G(ω)

3 t 7→ tα,ℜ(α) > −1 Γ(α+ 1)

ωα+1

We can write ∂xψ̂
int(x, ω)

∣∣∣
x=xr

as the product of two functions such as :

∂xψ̂
int(x, ω)

∣∣∣
x=xr

=
−e−iπ4√

w
· w ψ̂int(xr, ω)

∣∣∣
x=xr

(41)

prop. 2
=⇒ ∂xψ

int(x, t)
∣∣
x=xr

= L−1

[
−e−iπ4√

w

]
∗ L−1

[
w ψ̂int(xr, ω)

∣∣∣
x=xr

]
(t) (42)
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Property 3 can be reformulated as L
[
t 7→ tα

Γ(α+1)

]
(ω) = 1

wα+1 thus L−1

[
−e−iπ4√

w

]
(t) =

−e−iπ4√
π

1√
t
. Using

the fact that ψint
∣∣
ΣT

= 0, presented page 2 of [1], we get that ψint(xr, 0) = 0 thus applying prop. 3 leads to

L−1

[
w ψ̂int(xr, ω)

∣∣∣
x=xr

]
(t) = ∂tψ

int(x, t)
∣∣
x=xr

. This means that equation (42) yields

∂xψ
int(x, t)

∣∣
x=xr

=
−e−iπ4√

π

1√
t
∗ ∂tψint(x, t)

∣∣
x=xr

(t) (43)

= −e−iπ4 ∂t

 1√
π

t∫
s=0

ψint(x, s)
∣∣
x=xr√

t− s
ds

 (44)

= −e−iπ4 ∂1/2t ψint(xr, s) (Caputo fractional derivative definition) (45)

Thanks to the symmetry of the notation, the same expression can be derived on the external domain Ωℓ,
which can be concatenated into the formulation(

∂n + e−i
π
4 ∂

1/2
t

)
ψint = 0, on ΣT = {xℓ, xr} × [0, T ] (46)
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B Theoretical point and resolution of PDEs

The purpose of this section is to focus on the analytical resolution of certain PDEs, with the aim of
evaluating our simulations and presenting some interesting PDE resolution methods. We recommend the
Lawrence C. Evans’ book [3], it offers a clear and thorough exposition of the fundamental concepts and
resolutions of partial differential equations.

B.1 Wave equation

We are going to rule on the d’Alembert’s formula which is the solution of the homogeneous one-dimensional
wave equation with constant speed. Let’s start by recalling the PDE (27),{

∂ttψ − c2∂xxψ = 0 in R× (0,+∞),
ψ(·, 0) = ψ0, ∂tψ(·, 0) = ψt,0 on R.

(47)

Let’s begin by observing that the partial differential equation can be expressed in a ”factored” form as follows,

(∂t + c∂x) (∂t − c∂x)ψ = 0 (48)

For all x real and t positive, defining the relation ϕ(x, t) := (∂t − c∂x)ψ(x, t), equation (48) can be rewritten

∂tϕ+ c∂xϕ = 0 (49)

This is a transport equation with a constant coefficient. Let’s digress for a moment to solve this equation.

B.1.1 Homogeneous transport equation with constant coefficients

We search a function ϕ such that{
∂tϕ+ c∂xϕ = 0, (x, t) ∈ R× (0,+∞),
ϕ(x, 0) = ϕ0(x), x ∈ R.

(50)

We’ll take the opportunity of solving this equation to present the method of characteristics. The main idea
is to define the characteristic lines along which the partial differential equation reduces to a simple ordinary
differential equation. Solving the ordinary differential equation along a characteristic line enables us to find
the solution to the original problem.

Let’s define, for fixed (x, t) ∈ R× (0,∞), such a parametric characteristic curve (x(s), t(s)) for s ∈ (0, T )
such that x(0) = x and t(0) = t, in other word we follow a particle which is at position x at time t. It follows
from these choices

∂sϕ(x(s), t(s)) = ∂xϕ(x(s), t(s))x
′(s) + ∂tϕ(x(s), t(s))t

′(s).

We choose x′(s) = c and t′(s) = 1 to recover our initial equation,

∀s ∈ (0,+∞), ∂sϕ(s) = c∂xϕ(s) + ∂tϕ(s)
(50)
= 0

⇒ ϕ(s) = ϕ(x(0), t(0)).

That also implies for s ≥ 0, x(s) = cs+ x and t(s) = t+ s, which involves x = x− ct. We finally get, for all
s ∈ R, that ϕ(s) is a constant. By applying at s = −t it comes

∀s ∈ R, ϕ(s) = ϕ(x(−t), t(−t)) = ϕ(x− ct, 0) = ϕ0(x− ct).

In conclusion,
∀(x, t) ∈ R× (0,+∞), ϕ(x, t) = ϕ0(x− ct).

Let’s go back to our one-dimensional wave equation, we have therefore the solution of equation (49)

∀(x, t) ∈ R× (0,+∞), ϕ(x, t) := (∂t − c∂x)ψ(x, t) = ϕ0(x− ct). (51)

Moreover,
∀x ∈ R, ϕ0(x) = ϕ(x, 0) = ∂tψ(x, 0)− c∂xψ(x, 0). (52)

The equation (51) is a nonhomogoneous transport equation, let’s present a resolution of this kind of equation.
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B.1.2 Nonhomogeneous transport equation with constant coefficients

Now, we search a function ψ such that{
∂tψ − c∂xψ = ξ, (x, t) ∈ R× (0,+∞),
ψ = ψ0, (x, t) ∈ R× {0}. (53)

Inspired by the previous method, we fix (x, t) ∈ R × (0,+∞) and define our parametric curve x(s), t(s) :=
(x− cs, t+ s) for s ∈ R. To facilitate our notation, let’s introduce the function ζ by ζ(s) := ψ(x− cs, t+ s)
for s ∈ R. We note that ζ(0) = ψ(x, t) and ζ(−t) = ψ(x+ ct, 0). It comes,

∀s ∈ R, ζ ′(s) = −c∂xψ(x− cs, t+ s) + ∂tψ(x− cs, t+ s) = ξ(x− cs, t+ s).

We remark that ∫ 0

−t
ζ ′(s) ds = ζ(0)− ζ(−t) = ψ(x, t)− ψ(x+ ct, 0)

⇒ ψ(x, t) =

∫ 0

−t
ξ(x− cs, t+ s) ds+ ψ0(x+ ct)

⇒ ψ(x, t) =

∫ t

0

ξ(x− c(s− t), s) ds+ ψ0(x+ ct).

We conclude this paragraph by stating that (x, t) ∈ R× (0,+∞)+ 7→
∫ t
0
ξ(x− c(s− t), s) ds+ ψ0(x+ ct) is

the solution to problem (53).

We now have all the tools we need to solve the one-dimensional wave equation (47).
It comes by solving (51)

∀(x, t) ∈ R× (0,+∞), ψ(x, t) =

∫ t

0

ϕ0(x− c(s− t)− cs) ds+ ψ0(x+ ct)

=

∫ t

0

ϕ0(x+ ct− 2cs) ds+ ψ0(x+ ct)

=
1

2c

∫ x+ct

x−ct
ϕ0(y) dy + ψ0(x+ ct)

By injecting the equation (52) it comes

∀(x, t) ∈ R× (0,+∞), ψ(x, t) =
1

2c

∫ x+ct

x−ct
[∂tψ(y, 0)− c∂xψ(y, 0)] dy + ψ0(x+ ct)

=
1

2c

∫ x+ct

x−ct
∂tψ(y, 0) dy −

1

2
[ψ0(x+ ct)− ψ0(x− ct, 0)] + ψ0(x+ ct)

So we have d’Alembert’s formula which is solution of (47),

∀(x, t) ∈ R× (0,+∞), ψ(x, t) =
1

2
[ψ0(x+ ct) + ψ0(x− ct)] +

1

2c

∫ x+ct

x−ct
ψt,0(y) dy. (54)

B.2 Homogeneous Schrödinger equation

Here we are interested in solving homogeneous Schrödinger equation on R.{
∂tψ − i∂xxψ = 0 in R× (0,+∞),

ψ(·, 0) = ψ0 on R.
(55)

In order to solve it, always with the aim of presenting a wide range of methods, we will use Fourier theory.
The method presented here is inspired of the resolution of diffusion equation by using Fourier transform.
There are numerous other methods to solve this equation; for example, we can mention the method of deriv-
ing the fundamental form as presented in 2.3.1 of [3].

Before presenting our demonstration, we find it interesting to provide a theoretical overview of the Fourier
transform and related concepts to establish a consistent framework for our study.
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B.2.1 A brief introduction to the Fourier transform framework

In his book Theory of Distributions and Fourier Analysis [4], Jean-Michel Bony provides a detailed
exploration of the intricacies of the Fourier transformation. Proofs of the results used in this section can be
found in this book. Naturally, let’s start by introducing the Fourier transform.

Definition B.2.1. Fourier Transform
Let f ∈ L1(R), the Fourier transform (FT) of f is defined as the function f̃ on R by:

F(f)(ξ) = f̃(ξ) :=

∫
R
f(x)e−2iπx·ξ dx

We will now intuitively introduce the notion of Schwartz space, a fundamental set of Fourier theory. Re-
maining in an L1 frame, if f is sufficiently derivable with its derivatives in L1 then we obtain for α ∈ N,

F(∂αx f)(ξ) =
∫

R
∂αx f(x)e

−2iπx·ξ dx
IBP
= (2iπξ)αF(f)(ξ) (56)

If, analogously, xαf ∈ L1 and f̃ is sufficiently differentiable, by derivation through the fundamental theorem
of calculus

∂αξ f̃(ξ) = ∂αξ

(∫
Rd

f(x)e−2iπx·ξ dx

)
= F ((−2iπx)αf) (ξ) (57)

We come to understand the fundamental observation that the Fourier transformation interchanges regularity
(in terms of differentiability) and decay (in a polynomial sense) at infinity. This observation serves as
motivation for defining the Schwartz space.

Definition B.2.2. Schwartz space and rapid decay
Let f : R −→ R. f is said to have ”rapid decay” if:

∀p ∈ N, lim
|x|→+∞

xpf(x) = 0

The Schwartz space, denoted S(R), is defined as the set of functions f : R −→ R such that:

1. f ∈ C∞(R);

2. ∀p ∈ N, f (p) has rapid decay.

We have the following fundamental result.

Lemma B.2.3.
The Fourier transform is a isometric bijection of S(Rd) on S(Rd) admitting as inverse F−1.

And then, let recall the definition and the main property of the convolution of two functions.

Definition B.2.4. Convolution Product
Let f and g be two functions in L1(R). For all x ∈ R:

• y 7−→ f(x− y)g(y) ∈ L1(R)

• y 7−→ f(y)g(x− y) ∈ L1(R)

The convolution of f with g is defined as:

∀x ∈ R, (f ∗ g)(x) =
∫

R
f(x− y)g(y) dy =

∫
R
f(y)g(x− y) dy = (g ∗ f)(x)

and we have f ∗ g = g ∗ f ∈ L1(R).

Property B.2.5.
Let f, g ∈ L1(R), by using Fubini’s theorem we have:

f̃ ∗ g = f̃ g̃

Let f, g ∈ S(R), using Leibniz’s formula, we can show that:

∀(α, β) ∈ (N× N), |xα∂βx (fg)|∞ <∞ i.e. fg ∈ S(R).

We now have the fundamental tools to manipulate the Fourier transform.
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B.2.2 Existence and uniqueness of solution

We say that ψ ∈ C∞(R× R+) is uniformly in the Schwartz class if

∀T > 0, ∀j ∈ N, ∀α, β ∈ N, sup
t∈[0,T ]

||x 7→ xα∂βx∂
j
tψ(x, t)||∞ <∞.

We will show the following result.

Theorem B.2.6.
For any initial condition ψ0 ∈ S(Rd), there exists a unique function ψ ∈ C∞(R × R+), uniformly in S(R),
and is a solution to (55).

Uniqueness of solution
Suppose we have such a solution ψ, by taking j = 0 we have for all t ∈ R+ that u(·, t) ∈ S(R). Since the

Schwartz space is stable by derivations and included in L1(R), we can consider the Fourier transform of ψ
and its spatial derivative Fourier transform. By choosing j = 1, it follows that ∂tψ(·, t) also belongs to the
Schwartz class for all t ∈ R+. In this way, we can consider the Fourier transform of (55). The linearity of
this operation means that ψ also verifies{

∂̃tψ − i∂̃xxψ = 0 in R× (0,+∞),

ψ̃(·, 0) = ψ̃0 on R.
(58)

Since ψ ∈ C∞(R+×Rd) uniformly in the Schwartz class, we can define its partial Fourier transform (in space)

ψ̃ by

ψ̃ : R× R+ → C

(ξ, t) 7→ ψ̃(ξ, t) = ψ̃(·, t)(ξ).

Lemma B.2.7.
Let ψ ∈ C∞(R× R+) be uniformly in the Schwartz class. Then ψ̃ ∈ C∞(R× R+), also ψ̃ is uniformly in the
Schwartz class, and

∀j ∈ N,∀t ≥ 0, ∂jt ψ̃(t, ·) =
˜∂jtψ(t, ·).

Therefore, based on lemma B.2.7 and formula (56), we can state{
∂tψ̃ + i4π2ξ2ψ̃ = 0 in R× (0,+∞),

ψ̃(·, 0) = ψ̃0 on R.
(59)

By solving the Cauchy problem (59) associated with an ordinary differential equation, for a fixed ξ ∈ R, we
obtain that

∀ξ ∈ R,∀t ∈ R+, ψ̃(ξ, t) = ψ̃0(ξ)e
−i4π2ξ2t = ψ̃0(ξ)Gi4π2t(ξ), (60)

where, for all a ∈ C, we define Ga = e−a(·)
2

the Gaussian kernel. Let’s define the set of moderate-growth
functions

OM = {g ∈ C∞(R,C)/∀α ∈ N,∃C,M ≥ 0 s.t.

∀x ∈ Rd, |∂αx g(x)| ≤ C(1 + |x|2)M}.

It’s easy to verify that for all t > 0, Gi4π2t ∈ OM and

∀f ∈ S(R),∀g ∈ OM , fg ∈ S(R). (61)

Since ψ̃0 ∈ S(R) and Gi4π2t ∈ OM , we have for all t > 0 ψ̃(·, t) ∈ S(R) and by lemma B.2.3 the uniqueness of
ψ(·, t), i.e., the solution:

∀t ∈ R+, ψ(·, t) = F−1(ψ̃(t, ·))
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Existence of solution
After addressing the uniqueness question, we will now demonstrate the existence of a solution to our

problem. Let’s define

∀t ∈ R+, ϕ(·, t) = F−1(ψ̃0Gi4π2t).

Thus, ϕ(·, t) ∈ S(R) for all t ≥ 0, and

∀ξ ∈ R,∀t ∈ R+, ϕ̃(ξ, t) = ψ̃0(ξ)Gi4π2t(ξ).

To demonstrate that ϕ is the correct candidate of our problem, we will begin by proving that ϕ̃ ∈ C∞(R+×Rd),
that ϕ̃ is uniformly in the Schwartz class, and finally ϕ̃ satisfies (58). These findings, with the assistance
of lemma B.2.7 (by replacing F by F−1) and result (56), allow us to assert that ϕ will be the solution to
our initial Cauchy problem, that is, ϕ ∈ C∞(R × R+), uniformly in S(R), and is a solution to (55). We will

show that ϕ̃ is of class C∞. To do this, we will begin by demonstrating that (ξ, t) 7→ G−i4π2t(ξ) is of class
C∞(R× R+). It is known that

(ξ, t) 7→ ξ2 ∈ C∞(R× R+),

so that (ξ, t) 7→ tξ2 ∈ C∞(R× R+),

and (ξ, t) 7→ exp(−i4π2tξ2) ∈ C∞(R× R+),

because the composition by the exponential preserves the C∞ character. Moreover, our assumptions ensure

that ψ̃0 ∈ C∞(R), so
(ξ, t) 7→ ψ̃0(ξ) ∈ C∞(R× R+).

We deduce that ϕ̃ is the product of functions in C∞(R× R+), consequently ϕ̃ ∈ C∞(R× R+). We will now

show that ϕ̃ is uniformly in the Schwartz class.

Lemma B.2.8.
We define

∀n ∈ N, ∀ρ ∈ Cn(R), pn(ρ) := max
(
{||x 7→ xα∂βxρ(x)||∞ where |α|, |β| < n}

)
.

A function ρ is in the Schwartz class if and only if for all n ∈ N we have pn(ρ) <∞.

We have that

∀j ∈ N,∀α, β ∈ N,∀t ∈ R+,∀ξ ∈ R, |ξα∂βξ ∂
j
t ϕ̃(ξ, t)| =

∣∣∣∣∣∣
∑
γ≤β

(
β

γ

)
ξα∂γξ ψ̃0(ξ)∂

β−γ
ξ

(
(−i4π2ξ2)jGi4π2t(ξ)

)∣∣∣∣∣∣
≤
∑

K|ξlGi4π2t(ξ)∂
γ
ξ ψ̃0(ξ)|

where the sum is finite, γ ∈ N, K ∈ R and l ∈ N depend on the summation indices. We have that

∀γ ∈ N,∀l ∈ N,∀ξ ∈ R, |ξlGi4π2t(ξ)∂
γ
ξ ψ̃0(ξ)| ≤ |ξl∂γψ̃0(ξ)| <∞.

The last inequality is performed using that the Schwartz space is stable under differentiation and multipli-
cation by any polynomial. It then can be deduced that

∀T > 0, ∀j ∈ N, ∀α, β ∈ N, sup
t∈[0,T ]

||ξ 7→ ξα∂βξ ∂
j
t ϕ̃(ξ, t)||∞ <∞,

meaning that the function ϕ̃ is uniformly in the Schwartz class. Finally, we have

∀t ∈ R+,∀ξ ∈ R, ∂tϕ̃(ξ, t) = −i4π2ξ2ψ̃0(ξ)Gi4π2t(ξ) = −i4π2ξ2ϕ̂(ξ, t),

and ∀ξ ∈ R, ϕ̂(ξ, 0) = ψ̃0(ξ).

In other words, ϕ̂ also satisfies (59). In conclusion, ϕ is the unique function in C∞(R+ × Rd), uniformly in
the Schwartz class, and is a solution of (55). So we’ve proved the expected result.
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B.2.3 Analytical resolution

The objective of this part is to find the expression of u in the spatial and not frequency domain as (60).
However, we’ll start from this result to determine it but since Gi4π2t is not in L1(R), we cannot use the result
property B.2.5. The idea is then to extend this result to a space more suitable for our problem. Effectively,
therefore the inverse Fourier transform of Gi4π2t does not exist in the sense of functions, let’s try to consider
it in the space of distributions, more precisely in the space of tempered distributions. Our plan is therefore
as follows: we will start by giving a brief introduction to this space and its properties, then go on to prove
the following property

Property B.2.9. For T ∈ S ′(R) and ψ ∈ S(R),

T ∗ ψ ∈ S ′(R) and F(T ∗ ψ) = F(T )F(ψ),

which is an extension of property B.2.5 and finally conclude our initial problem.

A reminder of the fundamentals of tempered distributions
We will only briefly review and demonstrate some elements of this theory that we need for our proof. For

a more complete analysis, we can refer to chapters 5 and 6 of book [5]. Let recall that the definition of the
space of tempered distributions S ′(R).

Definition.

S ′(R) =
{
T : S(R) → C which is linear and continuous

ϕ 7→ ⟨T, ϕ⟩

}
,

considering continuity in the sense of distributions, i.e.,

ϕn → ϕ in S(R) ⇒ ⟨T, ϕn⟩ → ⟨T, ϕ⟩ in C.

In addition, we have the property

Property B.2.10.
f ∈ L1(R) ∪ L2(R) ∪ L∞(R) ⇒ Tf ∈ S ′(R),

where Tf is defined such for all ϕ ∈ S(R), ⟨Tf , ϕ⟩ =
∫

R f(x)ϕ(x)dx.

In order to define the Fourier transform on this space we have the following theorem

Theorem. The operator F from S(R) to S(R) has a unique extension to a continuous map of S ′(R) to S ′(R).
This operator F is defined as

∀T ∈ S ′(R),∀ϕ ∈ S(R), ⟨FT, ϕ⟩ = ⟨T,Fϕ⟩

It assert that the expression are still meaningful and continuous for function in S(R).

Indeed, since F is continuous on S(R) we have that

⟨FT, ϕn⟩ = ⟨T,Fϕn⟩ → ⟨T,Fϕ⟩ = ⟨FT, ϕ⟩.

Moreover, we note that the same can be done with the inverse Fourier transform of S(R) and stay the inverse
on S ′(R) since

⟨F−1FT, ψ⟩ = ⟨FT,F−1ψ⟩ = ⟨T,FF−1ψ⟩ = ⟨T, ψ⟩.

About Fourier transform and convolution on S ′(R)
Let’s start by showing that the convolution product between a tempered distribution and a function of

S(R) makes sense in S ′(R). For that we consider T ∈ S ′(R) and ψ ∈ S(R), it comes

∀ϕ ∈ S(R), ⟨T ∗ ψ, ϕ⟩ : =
∫
R

(T ∗ ψ)(x)ϕ(x)dx

=

∫
R

⟨T, ϕ(x− ·)⟩ϕ(x)dx

= ⟨T,
∫
R

ϕ(−(· − x))ϕ(x)dx⟩

= ⟨T, ψσ ∗ ϕ⟩,

On boundary conditions for numerical solutions of quantum wave equations 39/47



B THEORETICAL POINT AND RESOLUTION OF PDES Modeling Seminar

where ψσ(x) = ψ(−x). Therefore, since the Schwartz space is stable by convolution, we effectively have that
our object T ∗ ψ is well defined on S(R). Now, thanks to our last theorem, we can consider the Fourier
transform of this convolution and write

⟨F(T ∗ ψ), ϕ⟩ = ⟨T ∗ ψ,Fϕ⟩
= ⟨F−1FT, ψσ ∗ Fϕ⟩
= ⟨FT,F−1(ψσ ∗ Fϕ)⟩.

But according to property B.2.5 and noting that F−1ψ = F(ψσ) on S(R), we have

F−1(ψσ ∗ Fϕ) = F((ψσ ∗ Fϕ)σ)

= F
(∫

R
ψ(−(− · −x))Fϕ(x)dx

)
= F

(∫
R
ψ(·+ x)Fϕ(x)dx

)
= F

(∫
R
ψ(· − x)Fϕ(−x)dx

)
= F(ψ ∗ F−1ϕ)

= F(ψ)ϕ.

We deduce the expected result

⟨F(T ∗ ψ), ϕ⟩ = ⟨FT,F(ψ)ϕ⟩ = ⟨FTF(ψ), ϕ⟩.

In other word
∀T ∈ S ′(R),∀ψ ∈ S(R), F(T ∗ ψ) = F(T )F(ψ).

We finally proved property B.2.9.

Analytic Gaussian Fourier transform
Let recall our aim here is to compute the inverse Fourier transform of G4iπ2t (in a first time in the sense of

the distributions), so that we can apply property B.2.9 to obtain the spatial expression of our solution of (55).

First, for a ∈ C such that ℜ(a) > 0, Ga is in L∞(R), we can use the property B.2.10 to talk about
is associated tempered distribution. Here the idea will to notice that for any ψ ∈ S(R), the application

a 7→ ⟨e−ax2

, ψ⟩ is holomorphic in ℜ(a) > 0 and continuous in {ℜ(a) ≥ 0, a ̸= 0}, then to use to use analytic
continuation principle and a p.

Theorem (Analytic continuation principle). Let U be a convex open of C, and let f and g be two holomorphic
functions on U . Let A be a part of U admitting an accumulation point that belongs to U .
Then,

f = g on A ⇐⇒ f = g on U.

Remember that for R∗
+, we have

F(x 7→ e−ax
2

)(ξ) = (a−1π)e−π
2a−1ξ2 with

√
a =

√
|a|ei

arg(a)
2 .

The condition over root of a is equivalent to ℜ(
√
a) ≥ 0. We therefore have the following equality for R∗

+

⟨Fe−ax
2

, ψ⟩ =
∫
R

(a−1π)e−π
2a−1ξ2ψ(x)dx

Two sides are holomorphic in ℜ(a) > 0 and equal on ℜ(a) > 0, and continuous on {ℜ(a) ≥ 0, a ̸= 0}. By
choosing U = ℜ(a) > 0 and A = R∗

+, the unique continuation principle for analytic functional implies the
previous equality on ℜ(a) > 0. Now by continuity this result can be extended to {ℜ(a) ≥ 0, a ̸= 0}, i.e., we
have proved the following theorem

Theorem B.2.11. For all a ∈ {ℜ(a) ≥ 0, a ̸= 0},

Fe−ax
2

= (a−1π)e−π
2a−1ξ2 with

√
a =

√
|a|ei

arg(a)
2 .
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Back to the initial problem
The previous result allow us to write by taking a = −i 1

4t , which admits as root with positive real part√
a = e−i

π
4

1√
4t
,

F(e−iπ4 1√
4πt

ei
x2

4t ) = e−i4π
2tξ2

⇒ F−1(e−i4π
2tξ2) = e−i

π
4

1√
4πt

ei
x2

4t

a = e−i
π
4

1√
4πt
G−i/4t.

Now, appealing to property B.2.9, the result (60), the theorem B.2.6 and recalling that ψ0 ∈ S(R), we can
conclude in the following theorem.

Theorem B.2.12 (Schrödinger solution).
The unique solution to problem (55) is

∀t ≥ 0,∀x ∈ R, ψ(x, t) = e−i
π
4

1√
4πt

(ψ0 ∗ G−i/4t)(x). (62)

B.2.4 Application to the example of main article

In accordance with the simulation of [1], let’s choose

∀x ∈ R, ψ0(x) = 2 sech(
√
2x)ei

15
2 x. (63)

This is clear that ψ0 is of class C∞, let’s now prove that ψ0 is in the Schwartz class to use what was done
before. Since x 7→ ei

15
2 x ∈ OM , thanks to (61) all that remains is to show that the hyperbolic secant sech is

in the Schwartz class. To do this, we begin by showing by recurrence that

∀p ∈ N, ∀x ∈ R, sech(p)(x) =
P (ex) +Q(−x)
(ex + e−x)2p

, (64)

with P and Q are polynomials of degree strictly inferior to 2p. Since sech(x) = 2/(ex + e−x), the property is
obviously verified at rank 0. We have for all p ∈ N∗ and for all x ∈ R,

sech(p+1)(x) =
∂

∂x

[
sech(p)

]
(x)

=
(P ′(ex) +Q′(e−x))(ex + e−x)2

p − 2p(P (ex) +Q(e−x))(ex − e−x)(ex + e−x)2
p−1

(ex + e−x)2p+1

with ′ ≡ ∂

∂ex
.

Since the set of polynomials is closed by multiplication, we deduce that the numerator can be written as
desired (P ′ and Q′ stay polynomial (rk: their degrees don’t change)). Now let take interest of their degrees,
for that we denote degex(R) (resp. dege−x(R)) the degree of the polynomials R w.r.t ex (resp. e−x). It thus
comes

α := degex((P
′(ex) +Q′(e−x))(ex + e−x)2

p

) = degex(P
′(ex) +Q′(e−x)) + degex((e

x + e−x)2
p

).

We have by definition degex(P
′(ex) +Q′(e−x)) = degex(P

′(ex)) = degex(P (e
x)), then

α = degex(P (e
x)) + 2p < 2p + 2p = 2p+1.

by hypothesis. With the same reasoning, it is easy to show that

dege−x((P ′(ex) +Q′(e−x))(ex + e−x)2
p

) < 2p+1,

degex(2p(P (e
x) +Q(e−x))(ex − e−x)(ex + e−x)2

p−1) < 2p+1,

dege−x(2p(P (ex) +Q(e−x))(ex − e−x)(ex + e−x)2
p−1) < 2p+1.
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Then we proved (64), we deduce from that

∀p ∈ N, sech(p)(x) = O(e−|x|) when x→∞,

which allow us to write
∀k ∈ N,∀p ∈ N, lim

x→∞
xk sech(p)(x) = 0.

We have indeed sech ∈ S(R) and therefore verified that ψ0 ∈ S(R). We can now use our theorem B.2.12 to
write that the solution of the Schrödinger equation (55) with initial condition (63) is

∀t ≥ 0,∀x ∈ R, ψ(x, t) = e−i
π
4

1√
4πt

(
2 sech(

√
2z)ei

15
2 z ∗ G−i/4t(z)

)
(x). (65)
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C Energy analysis

C.1 Wave equation

Recall the most general form of the 1D wave equation studied here is

∂ttψ − c2∂xxψ = c2Q, (66)

for a positive (or null) source term Q. Multiplying by ∂ψ
∂t and integrating over spatial domain :

0 =

∫
Ω

∂2ψ

∂t2
∂ψ

∂t
dx− c2

∫
Ω

∂2ψ

∂x2
∂ψ

∂t
dx− c2

∫
Ω

Q(x, t)
∂ψ

∂t
dx

=
1

2

d

dt

∫
Ω

∣∣∣∣∂ψ∂t
∣∣∣∣2 dx− c2 ∫

Ω

∂2ψ

∂x2
∂ψ

∂t
dx− c2

∫
Ω

Q(x, t)
∂ψ

∂t
dx using

∂2ψ

∂t2
∂ψ

∂t
=

1

2

∂

∂t

(
(
∂ψ

∂t
)2
)

=
1

2

d

dt

∫
Ω

∣∣∣∣∂ψ∂t
∣∣∣∣2 dx+ c2

1

2

d

dt

∫
Ω

∣∣∣∣∂ψ∂x
∣∣∣∣2 dx− c2 ∫

Ω

Q(x, t)
∂ψ

∂t
dx using an IBP, then

∂2ψ

∂t∂x

∂ψ

∂x
=

1

2

∂

∂t

(
(
∂ψ

∂x
)2
)

Here, we periodic boundary condition in space to make boundary terms in the integration by parts (IBP)
vanish. From here, one can define the total energy as :

E(t) =
1

2

∫
Ω

[∣∣∣∣∂ψ∂t
∣∣∣∣2 + c2

∣∣∣∣∂ψ∂x
∣∣∣∣2
]
dx,

where the term containing time derivative corresponds to kinetic energy and the one with space derivative
to potential energy. Integrating the last line of computation over time [0, T ] gives :

E(t) = E(0) + c2
T∫

0

∫
Ω

Q(x, t)
∂ψ

∂t
(x, t)dxdt. (67)

One can see that if there is no source term (Q ≡ 0) then the total energy remains constant over time, which
is desirable. However, for non zero Q, the total energy increases over time, which is logical as if energy is
injected into the (spatial) domain, then the total energy changes. Note that Q could be negative to model
an energy sink.

C.2 Schrödinger equation

Recall that for problem eq. (55) with ψ0(R) ∈ S(R), we proved in appendix B.2.3 that the analytical
solution ψ verifies (60), that is,

∀ξ ∈ R,∀t ∈ R+, ψ̃(ξ, t) = ψ̃0(ξ)Gi4π2t(ξ).

Theorem (Plancherel theorem). The Plancherel theorem ensures that for f ∈ L2(R),

||f ||2 = ||f̃ ||2.

Thanks to theorem B.2.6, we can ensure that ψ ∈ S(R) ⊂ L2(R), therefore for all t ≥ 0 we have

||ψ(·, t)||2 = ||ψ̃(ξ, t)||2 = ||ψ̃0Gi4π2t||2.

Since Gi4π2t is initial we have
||ψ(·, t)||2 = ||ψ̃0||2,

i.e., the norm of the solution is effectively independent of time. Moreover, by applying Plancherel’s theorem
once again, we have

∀t ∈ R+, ||ψ(·, t)||2 = ||ψ0||2.
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D Convergence of the schemes

In the framework of linear equation, the convergence of a scheme is guaranteed as soon as the scheme
has proven to be consistent and stable. Consistency concerns the fact that the scheme is indeed a good
approximation to the equation, meaning that for a time and space step tending to 0, the approximation
tends to the exact solution (assuming it exists). Stability denotes the behaviour of a scheme to have bounded
error. In our case, we use Von Neumann stability analysis which looks at ratios of Fourier terms of the Fourier
series expansion of the approximation, making sure they do not blow up in high frequencies. As before, we
will denote ψ the exact solution to a given problem, ψ|nj = ψ(j∆x, n∆t) and finally ψnj its approximation.

D.1 Wave equation

First recall that the wave equation we use if formulated as :

∂tψ − c2∂xxψ = 0 (68)

where c is real and denotes the velocity. We use an explicit finite difference scheme to compute solutions to
this equation, given by

ψn+1
j − 2ψnj + ψn−1

j

∆t2
= c2

ψnj+1 − 2ψnj + ψnj−1

∆x2
(69)

Consistency analysis
Assuming the solution to the wave equation is twice differentiable in time and space, we can use Taylor-

Lagrange expansions of ψ to get :
ψ|n+1
j − 2ψ|nj + ψ|n−1

j

∆t2
− ∂ttψ|nj = ∆t2

12 ∂4tψ|
n
j + o(∆t2)

ψ|nj+1 − 2ψ|nj + ψ|nj−1

∆x2
− ∂xxψ|nj = ∆x2

12 ∂4xψ|
n
j + o(∆x2)

(70)

Assembling those relations to approximate time and space derivative in the original equation provides the
full scheme :

ψ|n+1
j − 2ψ|nj + ψ|n−1

j

∆t2
= c2

ψ|nj+1 − 2ψ|nj + ψ|nj−1

∆x2
(71)

This scheme is thus consistent of order 2 in time and space. In fact, when ∆x and ∆t tend to 0, the
approximation error does so.

Stability analysis
We will use the Von Neumann analysis framework. To do this, we identify ψnj ←→ Γneipj∆x for Γ, p some

real numbers corresponding to some frequency p in the Fourier domain and its associated modulus Γ. The
aim is to restrict |Γ| < 1. Injecting this identification in the scheme, we get

Γ2 − 2Γ + 1 = CΓ(−4 sin2(p∆x)) ⇐⇒ Γ2 − 2 [2 + 2C(cos(p∆x)− 1)] Γ + 1 = 0 (72)

where C = c2 ∆t2

∆x2 the CFL number. In what follows, we denote B = 2 + 2C(cos(p∆x) − 1). First remark
that this is a second order polynomial equation which unknown is Γ. It can be solved with the use of the
discriminant, which is ∆ = B2 − 4.

• If ∆ > 0, then B2 > 4. However, we see that B can not be bigger than 2, which means that for
such value for the discriminant to be reached, one has B < −2. The discriminant being positive, the
equation admits two real roots :

Γ± =
B ±

√
B2 − 4

2

However, one can observe that Γ− < B
2 < −2

2 = −1, which means instability. Thus, this condition on
the discriminant does not enable to find criterion to restrict the modulus of Γ.
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• If ∆ ≤ 0, then we have −2 ≤ B ≤ 2 and two complex roots

Γpm =
B ± i

√
4−B2

2
.

As one can check, this provides stability for sure as |Γ±| = Γ+Γ− = 1. It lasts to find what is the
restriction imposed on C by this case.

−2 ≤ 2 + 2C(cos(p∆x)− 1) ≤ 2

−2 ≤ C(cos(p∆x)− 1) ≤ 0

The right inequation is always satisfied as the cos function is always smaller than 1. However, the left
hand-side has to be checked. In the worst case of cos(p∆x) ≈ 1, we get that C ≤ 1, which is the CFL
condition for the scheme.

Thanks to Von Neumann stability analysis, we derived a criterion to ensure that the error does not blow
up during the simulation, which is that c∆t

∆x ≤ 1.

Conclusion
We have seen that the scheme is consistent, meaning that increasing the mesh resolution induces a

reduction of the approximation error. Moreover, we have derived a stability criterion. If those two conditions
are satisfied, then one can be sure that the scheme converged towards the strong solution of the wave equation.

D.2 Schrödinger equation

First recall the equation that is approximated, considering a null potential, on the interior of the domain

∂tψ − i∂xxψ = 0 (73)

and recall the Crank-Nicolson scheme that is used to approximate the problem at the interior of the domain

ψn+1
j − ψnj

∆t
=

i

2(∆x)2
[(
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

)
+
(
ψnj+1 − 2ψnj + ψnj−1

)]
. (74)

Consistency analysis
Assuming the solution to the Schrödinger equation is twice differentiable in time and four times differen-

tiable in space, we can write the following Taylor-Lagrange expansion of ψ :

ψ|n+1
j − ψ|nj

∆t
− ∂tψ|nj =

∆t

2
∂ttψ|nj + o(∆t) (75a)

ψ|nj+1 − 2ψ|nj + ψ|nj−1

∆x2
− ∂xxψ|nj =

∆x2

12
∂4xψ|nj + o(∆x2) (75b)

ψ|n+1
j+1 − 2ψ|n+1

j + ψ|n+1
j−1

∆x2
− ∂xxψ|n+1

j =
∆x2

12
∂4xψ|n+1

j + o(∆x2) (75c)

Then, performing the linear combination (75a)− i
2 [ (75b)+(75c)] provides the error term when the scheme is

applied to a true solution of the equation. Note that ∂ttψ = −∂4xψ. Denoting τnj the FD scheme applied to

ψ in the left member of the linear combination (75a)− i
2 [ (75b)+(75c)] we get

τnj −
[
∂tψ|nj −

i

2

(
∂xxψ|nj + ∂xxψ|n+1

j

)]
= −∆t

2
∂4xψ|nj + i

∆x2

24

(
∂4xψ|nj + ∂4xψ|n+1

j

)
+ o(∆t,∆x2). (76)

To get to the equivalent PDE, we need to retrieve equation (73) in the brackets of the left member. For this
we use the following relation:

∂tψ|nj −
i

2

(
∂xxψ|nj + ∂xxψ|n+1

j

)
= ∂tψ|nj − i∂xxψ|

n
j +

i

2

(
∂xxψ|nj − ∂xxψ|n+1

j

)
.

On boundary conditions for numerical solutions of quantum wave equations 45/47



D CONVERGENCE OF THE SCHEMES Modeling Seminar

But ∂xxψ|nj − ∂xxψ|
n+1
j = −∆t∂3xψ|nj + o(∆t), leading to the equivalent PDE :

ψ|n+1
j − ψ|nj

∆t
− i
[(
ψ|n+1
j+1 − 2ψ|n+1

j + ψ|n+1
j−1

)
+
(
ψ|nj+1 − 2ψ|nj + ψ|nj−1

)]
2(∆x)2

−
[
∂tψ|nj − i∂xxψ|

n
j

]
= −∆t

2

(
i∂3xψ|nj + ∂4xψ|nj

)
− i∆x

2

24

(
∂4xψ|nj + ∂4xψ|n+1

j

)
+ o(∆t,∆x2) (77)

This provides a way to show what error is made with the Crank-Nicolson scheme for homogeneous Schrödinger
equation. In fact, one can see that both dispersion and dissipation are induced by the truncation as some
third and fourth order spatial derivatives appear; it also proves the scheme is consistent of order 1 in time
and 2 in space. In fact, if ∆t and ∆x tend to 0, the error vanishes, meaning the approximation with this
scheme is consistent.

Stability
Before proving any stability condition for this scheme, we will prove a lemma to help up reduce the

computations for the stability proof.

Lemma D.2.1. Let α ∈ R, then for any z ∈ C such that
z − 1

z + 1
= αi, one gets |z| = 1.

Proof. Let α ∈ R, andz ∈ C such that
z − 1

z + 1
= αi. Then one has z =

1 + αi

1− αi
=

1− α2

1 + α2
+ i

2α

1 + α2
. Thus

|z|2 =

(
1− α2

1 + α2

)2

+

(
2α

1 + α2

)2

=
1− 2α2 + α4 + 4α2

(1 + α2)2
=

(1 + α2)2

(1 + α2)2
= 1.

Using Von Neumann analysis, we identify ψnj ←→ Γneipj∆x for Γ, p some real numbers corresponding to
some frequency p in the Fourier domain and its associated modulus Γ. Injecting this in the scheme provides:

Γ− 1

∆t
=

i

2 (∆x)
2

[
Γ
(
eip∆x − 2 + e−ip∆x

)
+
(
eip∆x − 2 + e−ip∆x

)]
leading, using that

(
eip∆x − 2 + e−ip∆x

)
= (2i)2 sin2(p∆x

2 ), to the equality :

Γ− 1

Γ + 1
= i

∆t

2∆x
(−4) sin2(p∆x

2
)

which by lemma D.2.1 gives that |Γ| = 1 so that Von Neumann stability criterion is always satisfied, i.e., the
scheme is unconditionally stable.

Conclusion The Crank-Nicolson scheme being consistent and stable for the Schrödinger equation, which
admits a solution, the scheme converges to this solution.
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